帳號:guest(18.222.182.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張瑜芳
作者(外文):Chang, Yu-Fang
論文名稱(中文):以改質氧化鑭搭配茚三酮衍生試劑比色法量測嘉磷塞農藥
論文名稱(外文):Colorimetric Determination of Glyphosate by Modified Lanthanum Oxide and Ninhydrin Reagent
指導教授(中文):吳劍侯
指導教授(外文):Wu, Chien-Hou
口試委員(中文):吳淑褓
王本誠
黃郁棻
口試委員(外文):Wu, Shu-Pao
Wang, Pen-Cheng
Huang, Yu-Fen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分析與環境科學研究所
學號:110015509
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:87
中文關鍵詞:嘉磷塞茚三酮水解可見光-紫外光分光光度計吸附氧化鑭檸檬酸溶膠-凝膠法
外文關鍵詞:GlyphosateNinhydrinHydrolysisUV-Vis spectrophotometerAdsorptionLanthanum oxideCitric acid sol-gel method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
嘉磷塞 (glyphosate) 為一種全球廣泛使用的有機磷除草劑,能有效的殺死草本、木本、闊葉等多種植物。一些研究表明,嘉磷塞已被發現存在於水體、食品、甚至是人體等環境中,使得可能導致長期的生物累積並對人類或生物體造成極大傷害,因此,開發一種簡單、靈敏、並具有選擇性的嘉磷塞分析方法對於環境和食品安全評估具有重要意義。本研究結合分離方法和分析技術,提供了一種檢測嘉磷塞的創新策略。提出以檸檬酸溶膠-凝膠法改質的氧化鑭 (c-La2O3-300) 吸附樣品中的嘉磷塞,並分離去除非待測物的雜質後,再以0.5 mM次氯酸鈉 (NaClO) 水解成甘胺酸 (glycine),最後使用經典的茚三酮反應 (ninhydrin) 衍生生成藍紫色產物,以UV-Vis分光光度計在570 nm處測定嘉磷塞濃度。該方法降低了吸附時間以及吸附劑的用量之外,也成功透過吸附手法排除樣品所含的其他干擾雜質進而提升量測準確度,並克服水解步驟引發ninhydrin衍生弱化的問題。檢測適用線性範圍為0.5–100 μM,偵測極限達0.52 μM,量測真實樣品回收率介於85–114%,方法已成功應用於檢測水體及食品當中的嘉磷塞。
Glyphosate is a commonly and widely applied organic phosphorus herbicide in the agricultural field. Its excellent performance also can effectively kill a variety of plants, including herbaceous, woody, and broad-leaved plants. Several studies have shown that glyphosate can be found in various environments such as water, food, and even human bodies. This may lead to long-term bioaccumulation and harm to humans or living organisms. Therefore, the development of a simple, sensitive, and selective analytical method for glyphosate is significant in environmental and food safety assessments. In this study, we provide an innovative strategy that combines a separation method and analytical technique to detect glyphosate. First, glyphosate was adsorbed onto citric acid sol-gel method modified lanthanum oxide (c-La2O3-300) from samples. After separating materials and removing impurities, the glyphosate on c-La2O3-300 was hydrolyzed by 0.5 mM NaClO to form glycine, which could be derivatized with ninhydrin to produce Ruhemann’s Purple coloures complex and measured glyphosate concentration by using UV-Vis spectrophotometer at 570 nm. In addition to reducing adsorption time and the amount of adsorbent, this study also successfully increased measurement accuracy by eliminating impurities in the adsorption step and overcoming the weak derivatization effect between ninhydrin reaction and hydrolysis step. The linear range was 0.5–100 μM, the limit of detection (LOD) was 0.52 μM, and real samples recovery were 85–114%. This method has been successfully applied to detect glyphosate in water and food samples.
目錄
摘要.................................................................I
Abstract............................................................II
誌謝................................................................III
目錄................................................................IV
圖目錄..............................................................VII
表目錄..............................................................XII
第一章 前言...........................................................1
1.1 簡介..........................................................1
1.2 研究動機......................................................2
第二章 文獻回顧.......................................................3
2.1 嘉磷塞類農藥...................................................3
2.1.1 農藥簡介與分類............................................3
2.1.2 嘉磷塞農藥的發展背景與危害.................................5
2.2 嘉磷塞的量測方法...............................................7
2.3 茚三酮 (Ninhydrin) 反應.......................................10
2.4 鑭吸附材料....................................................12
2.4.1製備方法:檸檬酸-溶膠凝膠法 (citric acid sol-gel method)...14
2.5 吸附原理......................................................15
2.5.1 物理吸附 (physisorption) 與化學吸附 (chemisorption).......15
第三章 研究方法......................................................17
3.1 實驗裝置......................................................17
3.1.1 紫外光可見光光譜儀 (UV-Vis spectrophotometer).............17
3.1.2試管震盪器................................................18
3.1.3 離心機...................................................18
3.1.4 其他儀器.................................................18
3.2 實驗之藥品與配製方式...........................................19
3.2.1 實驗藥品.................................................19
3.2.2 藥品配製.................................................20
3.3 實驗分析流程..................................................22
3.3.1 配製ninhydrin顯色試劑步驟.................................22
3.3.2 量測甘胺酸 (glycine) 檢量線的實驗步驟......................23
3.3.3 以檸檬酸溶膠-凝膠法製備的氧化鑭 (c-La2O3-300)..............24
3.3.4 量測嘉磷塞濃度的實驗步驟 (未添加材料吸附步驟)...............25
3.3.5 量測嘉磷塞濃度的實驗步驟 (有添加材料吸附步驟)...............26
3.2.6 萃取真實樣品中嘉磷塞的步驟及量測...........................27
第四章 結果與討論.....................................................28
4.1 Ninhydrin衍生反應最佳化條件....................................29
4.1.1 Ninhydrin反應pH最佳化....................................30
4.1.2 Ninhydrin濃度最佳化......................................32
4.2 NaClO水解效率探討.............................................34
4.2.1 NaClO水解時間最佳化.......................................35
4.2.2 NaClO水解濃度最佳化.......................................36
4.2.3 過高濃度NaClO對ninhydrin反應的顯色影響....................39
4.3 改質氧化鑭 (c-La2O3) 吸附嘉磷塞條件探討.........................43
4.3.1 c-La2O3吸附後清洗次數.....................................44
4.3.2 c-La2O3鍛燒溫度最佳化.....................................45
4.3.3 c-La2O3吸附pH條件最佳化...................................47
4.3.4 c-La2O3吸附劑劑量........................................48
4.3.5 農藥中異丙胺鹽成分之探討..................................49
4.4 影響吸附因素..................................................54
4.4.1 水體體積.................................................54
4.4.2 嘉磷塞與磷酸根之競爭效應..................................56
4.4.3 共存離子干擾.............................................58
4.5 分析方法確效..................................................60
4.6 真實樣品......................................................61
4.6.1 水體樣品分析結果..........................................62
4.6.2 食品樣品分析結果..........................................64
第五章 結論..........................................................65
第六章 未來展望.......................................................66
參考文獻.............................................................67
Supporting Information – 1..........................................77
Supporting Information – 2..........................................78
Supporting Information – 3..........................................80
Supporting Information – 4..........................................81
Supporting Information – 5..........................................86
The Author..........................................................87
Abubakar, Y.;Tijjani, H.;Egbuna, C.;Adetunji, C. O.;Kala, S.;Kryeziu, T. L.;Ifemeje, J. C.;Patrick-Iwuanyanwu, K. C. Natural Remedies for Pest, Disease and Weed Control:Pesticides, History, and Classification (pp. 29-42). Academic Press, United States, 2020.

Aktar, M. W.;Paramasivam, M.;Sengupta, D.;Purkait, S.;Ganguly, M.;Banerjee, S. Impact Assessment of Pesticide Residues in Fish of Ganga River around Kolkata in West Bengal. Environ. Monit. Assess. 2009, 157, 97–104.

Al-Ghouti, M. A.;Da'ana, D. A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383.

Arora, N. K.;Bouizgarne, B. Microbial Biotechnology for Sustainable Agriculture Volume 1. Springer, Singapore, 2022.

Benbrook, C. M. Trends in Glyphosate Herbicide Use in the United States and Globally. Environ. Sci. Eur. 2016, 28, 3.

Botero-Coy, A. M.;Ibanez, M.;Sancho, J. V.;Hernandez, F. Direct Liquid Chromatography-Tandem Mass Spectrometry Determination of Underivatized Glyphosate in Rice, Maize and Soybean. J. Chromatogr. A 2013, 1313, 157–165.

Bottom, C. B.;Hanna, S. S.;Siehr, D. J. Mechanism of the Ninhydrin Reaction. Biochem. Educ. 1978, 6, 4–5.

Calvert, J. G. Glossary of Atmospheric Chemistry Terms (Recommendations 1990). Pure Appl. Chem. 1990, 62, 2167–2219.

Campanale, C.;Triozzi, M.;Massarelli, C.;Uricchio, V. F. Development of a UHPLC-MS/MS Method to Enhance the Detection of Glyphosate, AMPA and Glufosinate at Sub-Microgram / L Levels in Water Samples. J. Chromatogr. A 2022, 1672, 463028.


Carretta, L.;Cardinali, A.;Marotta, E.;Zanin, G.;Masin, R. A New Rapid Procedure for Simultaneous Determination of Glyphosate and AMPA in Water at Sub Mug/L Level. J. Chromatogr. A 2019, 1600, 65–72.

Chang, Y.;Wei, Z.;Chang, X.;Ma, G.;Meng, L.;Liu, T.;Yang, L.;Guo, Y.;Ma, X. Hollow Hierarchically Porous La2O3 with Controllable Multishells: A High-Performance Adsorbent for Phosphate Removal. Chem. Eng. J. 2021, 421, 127816.

Colombo, S. D. M.;Masini, J. C. A Sequential-Injection Reversed-Phase Chromatography Method for Fluorimetric Determination of Glyphosate and Aminomethylphosphonic Acid. Anal. Methods 2014, 6, 490–496.

Crittenden, J. C.;Trussell, R. R.;Hand, D. W.;Howe, K. J.;Tchobanoglous, G. Mwh's Water Treatment: Principles and Design, Third Edition. John Wiley & Sons, Inc. United States, 2012.

Crown, D. A. The Development of Latent Fingerprints with Ninhydrin. J. Crim. L. Criminology & Police Sci. 1969, 60, 258–264.

Cushing, B. L.;Kolesnichenko, V. L.;O'Connor, C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946.

Dąbrowski, A. Adsorption from Theory to Practice. Adv. Colloid Interface Sci. 2001, 93, 135–224.

Danks, A. E.;Hall, S. R.;Schnepp, Z. The Evolution of “Sol–Gel” Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112.

Das, S. Recent Applications of Ninhydrin in Multicomponent Reactions. RSC Adv. 2020, 10, 18875–18906.

Dayan, F. E. Current Status and Future Prospects in Herbicide Discovery. Plants-Basel 2019, 8, 341.

Demonte, L. D.;Michlig, N.;Gaggiotti, M.;Adam, C. G.;Beldomenico, H. R.;Repetti, M. R. Determination of Glyphosate, AMPA and Glufosinate in Dairy Farm Water from Argentina Using a Simplified UHPLC-MS/MS Method. Sci. Total Environ. 2018, 645, 34–43.

Dijk, V. M.;Morley, T.;Rau, M. L.;Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010-2050. Nat. Food 2021, 2, 494–501.

Duke, S. O. The History and Current Status of Glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034.

Duke, S. O.;Powles, S. B. Glyphosate: A Once-in-a-Century Herbicide. Pest Manag. Sci. 2008, 64, 319–325.

FAO. The Future of Food and Agriculture-Alternative Pathways to 2050. Rome, 2018.

Fazary, A. E.;Fawy, K. F.;Bani-Fwaz, M. Z.;Sahlabji, T.;Abd-Rabboh, H. S. M. Thermodynamic Studies on Metal Ions – Ninhydrin – Glycine Interactions in Aqueous Solutions. J. Chem. Thermodyn. 2018, 118, 302–315.

Feng, L.;Zhang, Q.;Ji, F.;Jiang, L.;Liu, C.;Shen, Q.;Liu, Q. Phosphate Removal Performances of Layered Double Hydroxides (LDH) Embedded Polyvinyl Alcohol / Lanthanum Alginate Hydrogels. Chem. Eng. J. 2022, 430, 132754.

Fenik, J.;Tankiewicz, M.;Biziuk, M. Properties and Determination of Pesticides in Fruits and Vegetables. Trac-trend Anal. Chem. 2011, 30, 814–826.

Franz, J. E.;Mao, M. K.;Sikorski, J. A. Glyphosate:a Unique Global Herbicide. ACS Monograph, United States, 1998.

Friedman, M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. J. Agric. Food Chem. 2004, 52, 385–406.

Gandhi, K.;Khan, S.;Patrikar, M.;Markad, A.;Kumar, N.;Choudhari, A.;Sagar, P.;Indurkar, S. Exposure Risk and Environmental Impacts of Glyphosate: Highlights on the Toxicity of Herbicide Co-Formulants. Environ. Chall. 2021, 4, 100149.


George, J.;Shukla, Y. Pesticides and Cancer: Insights into Toxicoproteomic-Based Findings. J. Proteomics 2011, 74, 2713–2722.

Hao, L.;Feng, G.;Zhai, Z.;Li, M. Preparation of PEI/La2O3/Polypropylene Fiber Filter for Household Water Purifiers and Investigation of Its Phosphate Reduction and Bacterial Control. J. Water Process Eng. 2024, 60, 105137.

He, Q.;Zhao, H.;Teng, Z.;Wang, Y.;Li, M.;Hoffmann, M. R. Phosphate Removal and Recovery by Lanthanum-Based Adsorbents: A Review for Current Advances. Chemosphere 2022, 303, 134987.

Helander, M.;Saloniemi, I.;Saikkonen, K. Glyphosate in Northern Ecosystems. Trends Plant Sci. 2012, 17, 569–574.

IARC. Some Organophosphate Insecticides and Herbicides:IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 112, pp. 321-399). World Health Organization (WHO), 2017.

Jia, X.;He, X.;Han, K.;Ba, Y.;Zhao, X.;Zhang, Q. La2O3-Modified MCM-41 for Efficient Phosphate Removal Synthesized Using Natural Diatomite as Precursor. Water Sci. Technol. 2019, 79, 1878–1886.

Jimenez-Lopez, J.;Llorent-Martinez, E. J.;Ortega-Barrales, P.;Ruiz-Medina, A. Graphene Quantum Dots-Silver Nanoparticles as a Novel Sensitive and Selective Luminescence Probe for the Detection of Glyphosate in Food Samples. Talanta 2020, 207, 120344.

Ju, X.;Cui, H.;Liu, T.;Sun, Y.;Zheng, S.;Qu, X. Confined La2O3 Particles in Mesoporous Carbon Material for Enhanced Phosphate Adsorption. R. Soc. Open Sci. 2021, 8, 210428.

Kang, X.;Csetenyi, L.;Gadd, G. M. Monazite Transformation into Ce- and La-Containing Oxalates by Aspergillus Niger. Environ. Microbiol. 2020, 22, 1635–1648.

Kaur, G. Herbicides and Its Role in Induction of Oxidative Stress- a Review. Int. J. Environ. Agric. Biotech. 2019, 4, 995–1004.

Kennedy, K. K.;Maseka, K. J.;Mbulo, M. Selected Adsorbents for Removal of Contaminants from Wastewater: Towards Engineering Clay Minerals. Open J. Appl. Sci. 2018, 08, 355–369.

Kovács, N.;Maász, G.;Galambos, I.;Gerencsér-Berta, R.;Mihály, J.;Tombácz, E. Glyphosate/AMPA Adsorption on Magnetite under Different Conditions: The Effect of pH and Electrolytes. J. Mol. Liq. 2024, 393, 123674.
Králik, M. Adsorption, Chemisorption, and Catalysis. Chem. Pap. 2014, 68, 1625–1638.

Kumar, D.;Rub, M. A. Study of the Reaction of Ninhydrin with Tyrosine in Gemini Micellar Media. RSC Adv. 2019, 9, 22129–22136.

Lacroix, R.;Kurrasch, D. M. Glyphosate Toxicity: In Vivo, In Vitro, and Epidemiological Evidence. Toxicol. Sci. 2023, 192, 131–140.

Lanzarin, G. A. B.;Félix, L. M.;Fontaínhas-Fernandes, A.;Monteiro, S. M.;Venâncio, C. Effects of Glyphosate or Glyphosate-Based Herbicide During the Zebrafish Life Cycle: A Review Addressing the Mechanisms of Toxicity. Water 2023, 15, 2276.

Leong, W. H.;Teh, S. Y.;Hossain, M. M.;Nadarajaw, T.;Zabidi-Hussin, Z.;Chin, S. Y.;Lai, K. S.;Lim, S. E. Application, Monitoring and Adverse Effects in Pesticide Use: The Importance of Reinforcement of Good Agricultural Practices (Gaps). J. Environ. Manage. 2020, 260, 109987.

Li, C.;Li, Y.;Li, Q.;Duan, J.;Hou, J.;Hou, Q.;Ai, S.;Li, H.;Yang, Y. Regenerable Magnetic Aminated Lignin/Fe3O4/La(OH)3 Adsorbents for the Effective Removal of Phosphate and Glyphosate. Sci. Total Environ. 2021, 788, 147812.

Li, M.;Luo, Y.;Zhao, D.;Qiu, S.;Zhang, L.;Zhang, K.;Song, C.;Wang, F. Different La/Fe Oxide Composites for Efficient Phosphate Removal from Wastewater: Properties and Mechanisms. J. Environ. Chem. Eng. 2022, 10, 107329.

Liu, J.;Wang, G.;Lu, L.;Guo, Y.;Yang, L. Facile Shape-Controlled Synthesis of Lanthanum Oxide with Different Hierarchical Micro/Nanostructures for Antibacterial Activity Based on Phosphate Removal. RSC Adv. 2017, 7, 40965–40972.


Liu, J.;Zhou, Q.;Chen, J.;Zhang, L.;Chang, N. Phosphate Adsorption on Hydroxyl-Iron-Lanthanum Doped Activated Carbon Fiber. Chem. Eng. J. 2013, 215–216, 859–867.

Lopes, J. H.;Bueno, O.;Mazali, I. O.;Bertran, C. A. Investigation of Citric Acid-Assisted Sol-Gel Synthesis Coupled to the Self-Propagating Combustion Method for Preparing Bioactive Glass with High Structural Homogeneity. Mater. Sci. Eng. C. 2019, 97, 669-678.
Luna, S.;Neila, L. P.;Vena, R.;Borgatello, C.;Rosso, S. B. Glyphosate Exposure Induces Synaptic Impairment in Hippocampal Neurons and Cognitive Deficits in Developing Rats. Arch. Toxicol. 2021, 95, 2137–2150.

Maggi, F.;la Cecilia, D.;Tang, F. H. M.;McBratney, A. The Global Environmental Hazard of Glyphosate Use. Sci. Total Environ. 2020, 717, 137167.

Mali, A.;Ataie, A. Structural Characterization of Nano-Crystalline BaFe12O19 Powders Synthesized by Sol–Gel Combustion Route. Scripta Mater. 2005, 53, 1065-1070.

Matozzo, V.;Fabrello, J.;Marin, M. G. The Effects of Glyphosate and Its Commercial Formulations to Marine Invertebrates: A Review. J. Mar. Sci. Eng. 2020, 8, 399.

Mehrsheikh, A.;Bleeke, M.;Brosillon, S.;Laplanche, A.;Roche, P. Investigation of the Mechanism of Chlorination of Glyphosate and Glycine in Water. Water Res. 2006, 40, 3003–3014.

Mozaffari Majd, M.;Kordzadeh-Kermani, V.;Ghalandari, V.;Askari, A.;Sillanpaa, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010-2020). Sci. Total Environ. 2022, 812, 151334.

Mu, Q.;Wang, Y. Synthesis, Characterization, Shape-Preserved Transformation, and Optical Properties of La(OH)3, La2O2CO3, and La2O3 Nanorods. J. Alloys Compd. 2011, 509, 396–401.

Munoz, J. P.;Bleak, T. C.;Calaf, G. M. Glyphosate and the Key Characteristics of an Endocrine Disruptor: A Review. Chemosphere 2021, 270, 128619.


Munoz, J. P.;Silva-Pavez, E.;Carrillo-Beltran, D.;Calaf, G. M. Occurrence and Exposure Assessment of Glyphosate in the Environment and Its Impact on Human Beings. Environ. Res. 2023, 231, 116201.

Niemann, L.;Sieke, C.;Pfeil, R.;Solecki, R. A Critical Review of Glyphosate Findings in Human Urine Samples and Comparison with the Exposure of Operators and Consumers. J. Verbrauch. Lebensm. 2015, 10, 3–12.


Ofosu, R.;Agyemang, E. D.;Márton, A.;Pásztor, G.;Taller, J.;Kazinczi, G. Herbicide Resistance: Managing Weeds in a Changing World. Agronomy 2023, 13, 1595.

Peillex, C.;Pelletier, M. The Impact and Toxicity of Glyphosate and Glyphosate-Based Herbicides on Health and Immunity. J. Immunotoxicol. 2020, 17, 163–174.

Rajendran, S.;Sai Bharadwaj, A. V. S. L.;Barmavatu, P.;Palani, G.;Trilaksanna, H.;Kannan, K.;Meenakshisundaram, N. A Review on Lanthanum-Based Materials for Phosphate Removal. Chem. Eng. 2024, 8, 23.

Rawat, D.;Bains, A.;Chawla, P.;Kaushik, R.;Yadav, R.;Kumar, A.;Sridhar, K.;Sharma, M. Hazardous Impacts of Glyphosate on Human and Environment Health: Occurrence and Detection in Food. Chemosphere 2023, 329, 138676.

Remlinger, V. I.;Lenhardt, K. R.;Rechberger, M. V.;Rennert, T.;Rennhofer, H.;Tunega, D.;Ottner, F.;Willinger, M.;Zehetner, F.;Gerzabek, M. H. Glyphosate Adsorption on Synthetic Allophanes and Halloysite: Effects of pH and Mineral Properties. J. Soil Sci. Plant Nutr. 2023, 186, 568–579.

Rigobello-Masini, M.;Pereira, E. A. O.;Abate, G.;Masini, J. C. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. Chromatographia 2019, 82, 1121–1138.

Roslim, M. H. M.;Juraimi, A. S.;Che’Ya, N. N.;Sulaiman, N.;Manaf, M. N. H. A.;Ramli, Z.;Motmainna, M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy 2021, 11, 1809.

Ruhemann, S. Ccxii.—Triketohydrindene Hydrate. J. Chem. Soc., Trans. 1910, 97, 2025–2031.
Ruthven, D. M. Principles of Adsorption and Adsorption Processes. Wiley-Interscience, United States, 1984.

Santovito, A.;Ruberto, S.;Gendusa, C.;Cervella, P. In Vitro Evaluation of Genomic Damage Induced by Glyphosate on Human Lymphocytes. Environ. Sci. Pollut. Res. Int. 2018, 25, 34693–34700.

Simonetti, E.;Cartaud, G.;Quinn, R. M.;Marotti, I.;Dinelli, G. An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour. J. AOAC Int. 2015, 98, 1760–1768.

Slaby, S.;Titran, P.;Marchand, G.;Hanotel, J.;Lescuyer, A.;Lepretre, A.;Bodart, J. F.;Marin, M.;Lemiere, S. Effects of Glyphosate and a Commercial Formulation Roundup(R) Exposures on Maturation of Xenopus Laevis Oocytes. Environ. Sci. Pollut. Res. Int. 2020, 27, 3697–3705.

Soukup, S. T.;Merz, B.;Bub, A.;Hoffmann, I.;Watzl, B.;Steinberg, P.;Kulling, S. E. Glyphosate and AMPA Levels in Human Urine Samples and Their Correlation with Food Consumption: Results of the Cross-Sectional Karmen Study in Germany. Arch. Toxicol. 2020, 94, 1575–1584.

Stalikas, C. D.;Konidari, C. N. Analytical Methods to Determine Phosphonic and Amino Acid Group-Containing Pesticides. J. Chromatogr. A 2001, 907, 1–19.

Steinborn, A.;Alder, L.;Michalski, B.;Zomer, P.;Bendig, P.;Martinez, S. A.;Mol, H. G.;Class, T. J.;Pinheiro, N. C. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food. Chem. 2016, 64, 1414–1421.

Swenson, H.;Stadie, N. P. Langmuir's Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426.

Takano, H. K.;Dayan, F. E. Glufosinate-Ammonium: A Review of the Current State of Knowledge. Pest Manag. Sci. 2020, 76, 3911–3925.

Tee, K. A.;Ahmed, S.;Badsha, M. A.;Wong, K. C.;Lo, I. M. Comprehensive review and future research directions on using various lanthanum-based adsorbents for selective phosphate removal. Clean Technol. Environ. Policy 2023, 25, 1783–1805.

Thongprakaisang, S.;Thiantanawat, A.;Rangkadilok, N.;Suriyo, T.;Satayavivad, J. Glyphosate Induces Human Breast Cancer Cells Growth Via Estrogen Receptors. Food Chem. Toxicol. 2013, 59, 129–136.

Travlos, I.;Cheimona, N.;Bilalis, D. Glyphosate Efficacy of Different Salt Formulations and Adjuvant Additives on Various Weeds. Agronomy 2017, 7, 60.

Tudi, M.;Daniel Ruan, H.;Wang, L.;Lyu, J.;Sadler, R.;Connell, D.;Chu, C.;Phung, D. T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112.

USEPA. In Pesticides Industry Sales and Usage 2008-2012 Market Estimates. EPA, United States, 2012.

Usui, K.;Minami, E.;Fujita, Y.;Kubota, E.;Kobayashi, H.;Hanazawa, T.;Yoshizawa, T.;Kamijo, Y.;Funayama, M. Application of Probe Electrospray Ionization-Tandem Mass Spectrometry to Ultra-Rapid Determination of Glufosinate and Glyphosate in Human Serum. J. Pharm. Biomed. Anal. 2019, 174, 175–181.

Wang, J.;Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020a, 258, 127279.

Wang, J.;Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020b, 390, 122156.

Wen, W.;Wu, J. M. Nanomaterials Via Solution Combustion Synthesis: A Step Nearer to Controllability. RSC Adv. 2014, 4, 58090-58100.

Yamagishi, M. Studies on Ninhydrin Reaction. VIII:Ninhydrin Reaction of R1R2CH-NH2 Type Compounds and Its Homologs. J. Pharm. Soc. Japan 1954, 74, 1233–1235.

Yang, J.;Yuan, P.;Chen, H.-Y.;Zou, J.;Yuan, Z.;Yu, C. Rationally Designed Functional Macroporous Materials as New Adsorbents for Efficient Phosphorus Removal. J. Mater. Chem. 2012, 22, 9983–9990.

Yang, Y.;Ghalandari, B.;Lin, L.;Sang, X.;Su, W.;Divsalar, A.;Ding, X. A Turn-on Fluorescence Sensor Based on Cu2+ Modulated DNA-Templated Silver Nanoclusters for Glyphosate Detection and Mechanism Investigation. Food Chem. 2022, 367, 130617.

Yoshioka, N.;Asano, M.;Kuse, A.;Mitsuhashi, T.;Nagasaki, Y.;Ueno, Y. Rapid Determination of Glyphosate, Glufosinate, Bialaphos, and Their Major Metabolites in Serum by Liquid Chromatography-Tandem Mass Spectrometry Using Hydrophilic Interaction Chromatography. J. Chromatogr. A 2011, 1218, 3675–3680.

Zhang, Y.;Pan, B.;Shan, C.;Gao, X. Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-Linked Polystyrene Networks. Environ. Sci. Technol. 2016, 50, 1447–1454.

Zayat, M.;Levy, D. Blue CoAl2O4 Particles Prepared by the Sol−Gel and Citrate−Gel Methods. Chem. Mater. 2000, 12, 2763–2769.

蔡文珊。農藥毒理特性與管理。農政與農情月刊,2001,113。

黃仕鋆。以茚三酮衍生試劑搭配分光光度法量測胺基甲酸酯類和嘉磷塞農藥。碩士論文,國立清華大學,新竹,2021。

洪莛逸。開發吸附劑用於嘉磷塞檢測研究。碩士論文,國立清華大學,新竹,2021。

NIEA W655.51B, 2014. 國家環境研究院公告訂定「水中嘉磷塞檢測方法-液相層析儀/管柱後衍生/螢光偵測器法」,環署檢字第 1030054467 號。

NIEA W548.50B, 2021. 國家環境研究院公告訂定 「水中嘉磷塞及其代謝物檢測方法-液相層析串聯式質譜儀法」,環署檢字第 1101000937 號。
(此全文20290718後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *