帳號:guest(13.58.5.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭若華
作者(外文):Peng, Jo-Hua
論文名稱(中文):心血管磁共振放射組學之法洛氏四重症危險因素分類
論文名稱(外文):Radiomics-Based Classification of Risk Factors in Repaired Tetralogy of Fallot by Cardiovascular Magnetic Resonance
指導教授(中文):彭旭霞
指導教授(外文):Peng, Hsu-Hsia
口試委員(中文):黃騰毅
劉益瑞
吳銘庭
翁根本
口試委員(外文):Huang, Teng-Yi
Liu, Yi-Jui
Wu, Ming-Ting
Weng, Ken-Pen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:110012526
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:234
中文關鍵詞:法洛氏四重症肺動脈瓣置換術放射組學
外文關鍵詞:repaired Tetralogy of Fallotpulmonary valve replacementradiomics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺動脈逆流(pulmonary regurgitation, PR)嚴重程度、右心室擴張和不良運動耐受度是評估修復後法洛氏四重症(repaired Tetralogy of Fallot, rTOF)患者是否應考慮再次進行肺動脈瓣置換術(pulmonary valve replacement, PVR)的三個重要指標。在過去,計算PR分數需要在肺動脈中取得至少一張 2D 相位對比磁共振影像(phase contrast magnetic resonance image, PC MRI),這導致rTOF患者的掃描時間較長。 此外,PR引起的心臟變化的機制、右心室擴張對左心室變化的影響以及不良運動耐受度引起的心臟變化對於平衡穩態自由旋進動態影像(balanced steady-state free precession cine images, bSSFP cine images)中之心臟結構和灰度強度的細微變化機制尚不清楚。此外,傳統的心血管磁振造影(cardiovascular magnetic resonance, CMR)心室體積指數並不能完全區分上述危險因子。 儘管先前的研究已經證明傳統的未打對比劑T1值(native T1 values)可以區分TOF患者和正常對照組,但測量值仍存在重疊的情況。
CMR 放射組學(radiomics)提供比傳統影像分析更細微的心血管表型分析方法。 它有可能更深入地了解心血管型態和功能之間的複雜關係。 透過將radiomics與 bSSFP cine images和native T1 mapping相結合,我們的目標是提供心臟評估的多面向維度。透過這種整合,我們進一步揭示心室重塑的隱藏模式,識別細微的心肌紋理變化,並在PR ≥ 25%、PR ≥ 40%、右心室擴張、不良運動耐受度和radiomics衍生的表型特徵等數據之間建立連結。
此研究為 PVR 危險因素如何影響TOF 患者提供新的見解,包括潛在的獨特紋理變化和心室重塑模式。我們的研究表明,radiomics優於傳統的 CMR 指數,有助於改善由於 PVR 危險因子的影響而導致的心臟結構和組織變化的量化。 此外,所識別的組織特徵提供了超出傳統native T1 values的附加價值。 這些資訊有助於評估可能需進行PVR手術的風險因素。
Pulmonary regurgitation (PR) severity, right ventricular (RV) dilation, and exercise intolerance were three important indicators for assessing whether pulmonary valve replacement (PVR) should have been considered in repaired Tetralogy of Fallot (rTOF) patients. In the past, calculating PR fraction required at least one 2D phase contrast magnetic resonance image to be obtained in the pulmonary trunk, which resulted in longer scanning times for rTOF patients. Furthermore, the mechanisms underlying the changes in the heart caused by PR, the effects of RV dilation on left ventricular changes, and the alterations in the heart resulting from exercise intolerance, particularly in relation to subtle modifications in cardiac structure and grayscale intensity within balanced steady-state free precession (bSSFP) cine images, were not yet well understood. Additionally, conventional cardiovascular magnetic resonance (CMR) volumetric indices did not fully differentiate the aforementioned risk factors. Although conventional native T1 values had been demonstrated in a previous study to distinguish between rTOF patients and normal controls, there was still some overlap in the measurements.
CMR radiomics offered a more advanced approach to cardiovascular phenotyping than traditional image analysis. It had the potential to provide a deeper understanding of the complex relationship between cardiovascular morphology and function. By combining radiomics with bSSFP cine images and native T1 mapping, we aimed to unlock multifaceted dimensions of cardiac evaluation. Through this integration, we hoped to uncover hidden patterns of ventricular remodeling, identify subtle myocardial texture variations, and establish correlations between variables such as PR ≥ 25%, PR ≥ 40%, RV dilation, exercise intolerance, and radiomics-derived phenotypic profiles.
This study provided novel insights into how factors related to PVR impacted rTOF patients, including potential distinctive textural variations and ventricular remodeling patterns. Our study demonstrated that radiomics, surpassing conventional CMR indices, facilitated the improved quantification of changes in cardiac structure and tissue due to the effects of PVR risk factors. Moreover, the discerned tissue characteristics offered additional value beyond conventional native T1 values. This information could aid in assessing risk factors for PVR procedures.
致謝 ii
摘要 iv
Abstract v
CONTENTS vii
FIGURES xi
TABLES xx
Chapter 1 Introduction 1
1.1 Tetralogy of Fallot 1
1.2 Diagnosis of TOF 2
1.2.1 Echocardiography 2
1.2.2 Cardiovascular Magnetic Resonance Imaging 5
1.3 Pulmonary Valve Replacement 7
1.3.1 Pulmonary Regurgitation 8
1.3.2 RV Dilation 10
1.3.3 Ventricular Interaction 11
1.3.4 Exercise Intolerance 11
1.4 Radiomics 12
1.4.1 Radiomic Analysis of Cine Images 13
1.4.2 Radiomic Analysis of Native T1 Mapping 15
1.5 Motivation 17
Chapter 2 Theory 19
2.1 Phase Contrast MRI 19
2.2 Balanced Steady State Free Precession Imaging 21
2.3 Modified Look-Locker Inversion Recovery 23
Chapter 3 Methodology 26
3.1 Study Cohort 26
3.2 MRI Acquisition 26
3.2.1 Cine Images 26
3.2.2 Native T1 Mapping 27
3.3 Radiomics Procedure 27
3.4 Segmentation 30
3.4.1 Cine Images 30
3.4.2 Native T1 Mapping 32
3.5 Radiomic Feature Extraction 33
3.5.1 Shape Radiomic Features 34
3.5.2 First Order Radiomic Features 35
3.5.3 Texture Radiomic Features 35
3.6 Machine Learning Scheme 36
3.6.1 Normalization 37
3.6.2 Feature Selection Methods 37
3.6.3 Classification Methods 39
3.6.4 Model Building 43
3.7 Evaluation of the Models 44
3.7.1 Receiver Operating Characteristic Curve 44
3.7.2 Evaluation Metrics 45
3.8 Preprocessing Filters 47
3.9 Statistical Analysis 49
Chapter 4 Results & Discussion : Radiomic Analysis of Cine Images 50
4.1 Differentiating rTOF Patients from Normal Controls 50
4.1.1 Demographics of Study Cohorts 50
4.1.2 Pedictive Performance of Feature Selection and Classification Methods 54
4.1.3 Correlogram 57
4.1.4 Predictive Performance and Evaluation of the Models 57
4.1.5 Predictive Performance of Preprocessing Filters 59
4.1.6 Radiomics Signatures 61
4.2 Identifying rTOF Patients with PR ≥ 25% 63
4.2.1 Demographics of Study Cohorts 63
4.2.2 Pedictive Performance of Feature Selection and Classification Methods 66
4.2.3 Predictive Performance and Evaluation of the Models 68
4.2.4 Predictive Performance of Preprocessing Filters 71
4.2.5 Radiomics Signatures 73
4.3 Identifying rTOF Patients with PR ≥ 40% 75
4.3.1 Demographics of Study Cohorts 75
4.3.2 Pedictive Performance of Feature Selection and Classification Methods 78
4.3.3 Predictive Performance and Evaluation of the Models 80
4.3.4 Predictive Performance of Preprocessing Filters 83
4.3.5 Radiomics Signatures 85
4.4 Identifying rTOF Patients with RV Dilation 87
4.4.1 Demographics of Study Cohorts 87
4.4.2 Predictive Performance of Feature Selection and Classification Methods 91
4.4.3 Predictive Performance and Evaluation of the Models 93
4.4.4 Predictive Performance of Preprocessing Filters 96
4.4.5 Radiomics Signatures 98
4.5 Identifying rTOF Patients with Exercise Intolerance 101
4.5.1 Demographics of Study Cohorts 101
4.5.2 Predictive Performance of Feature Selection and Classification Methods 104
4.5.3 Predictive Performance and Evaluation of the Models 106
4.5.4 Predictive Performance of Preprocessing Filters 109
4.5.5 Radiomics Signatures 111
4.6 Discussion 114
4.6.1 Differentiating rTOF patients from normal controls 114
4.6.2 Identifying rTOF patients with PR ≥ 25% 115
4.6.3 Identifying rTOF patients with PR ≥ 40% 116
4.6.4 Identifying rTOF patients with RV dilation 117
4.6.5 Identifying rTOF patients with exercise intolerance 118
Chapter 5 Results & Discussion : Radiomic Analysis of Native T1 Mapping 121
5.1 Differentiating rTOF Patients from Normal Controls 121
5.1.1 Demographics of Study Cohorts 121
5.1.2 Region Native T1 Value 124
5.1.3 Predictive Performance of Feature Selection and Classification Methods 125
5.1.4 Predictive Performance and Evaluation of the Models 127
5.1.5 Predictive Performance of Preprocessing Filters 130
5.1.6 Radiomics Signatures 132
5.2 Identifying rTOF Patients with PR ≥ 25% 134
5.2.1 Demographics of Study Cohorts 134
5.2.2 Segmental Mid Slice Native T1 Value 137
5.2.3 Predictive Performance of Feature Selection and Classification Methods 137
5.2.4 Predictive Performance and Evaluation of the Models 143
5.2.5 Predictive Performance of Preprocessing Filters 145
5.2.6 Radiomics Signatures 148
5.3 Identifying rTOF Patients with PR ≥ 40% 150
5.3.1 Demographics of Study Cohorts 150
5.3.2 Segmental Mid-slice Native T1 Value 152
5.3.3 Predictive Performance of Feature Selection and Classification Methods 153
5.3.4 Predictive Performance and Evaluation of the Models 159
5.3.5 Predictive Performance of Preprocessing Filters 161
5.3.6 Radiomics Signatures 163
5.4 Identifying rTOF Patients with RV Dilation 165
5.4.1 Demographics of Study Cohorts 165
5.4.2 Segmental Mid-slice Native T1 Value 168
5.4.3 Predictive Performance of Feature Selection and Classification Methods 169
5.4.4 Predictive Performance and Evaluation of the Models 175
5.4.5 Predictive Performance of Preprocessing Filters 177
5.4.6 Radiomics Signatures 180
5.5 Identifying rTOF Patients with Exercise Intolerance 182
5.5.1 Demographics of Study Cohorts 182
5.5.2 Segmental Mid-slice Native T1 Value 184
5.5.3 Predictive Performance of Feature Selection and Classification Methods 185
5.5.4 Predictive Performance and Evaluation of the Models 191
5.5.5 Predictive Performance of Preprocessing Filters 193
5.5.6 Radiomics Signatures 195
5.6 Discussion 197
5.6.1 Differentiating rTOF patients from normal controls 197
5.6.2 Identifying rTOF patients with PR ≥ 25% 198
5.6.3 Identifying rTOF patients with PR ≥ 40% 199
5.6.4 Identifying rTOF patients with RV dilation 201
5.6.5 Identifying rTOF patients with exercise intolerance 203
Chapter 6 Discussion & Conclusion 205
6.1 Discussion 205
6.1.1 Differentiating rTOF patients from normal controls 205
6.1.2 Identifying rTOF Patients with PR severity 207
6.1.3 Identifying rTOF Patients with RV Dilation 209
6.1.4 Identifying rTOF Patients with Exercise Intolerance 211
6.2 Limitation 214
6.3 Conclusion 215
6.4 Future work 216
References 217
Appendix 226
Response of Oral Defense 226
Abbreviation List 231
Definition List of Quantitative Indices 233
Plagiarism Detection 234
1. Apitz, C., G.D. Webb, and A.N. Redington, Tetralogy of Fallot. Lancet, 2009. 374(9699): p. 1462-71.
2. Althali, N.J. and K.E. Hentges, Genetic insights into non-syndromic Tetralogy of Fallot. Front Physiol, 2022. 13: p. 1012665.
3. Kiran, U., et al., The blalock and taussig shunt revisited. Ann Card Anaesth, 2017. 20(3): p. 323-330.
4. Selmonosky, C.A., et al., Palliative shunting operations in tetralogy of Fallot. Effects upon the results of total correction. Ann Thorac Surg, 1972. 14(1): p. 16-23.
5. Petrucci, O., et al., Risk factors for mortality and morbidity after the neonatal Blalock-Taussig shunt procedure. Ann Thorac Surg, 2011. 92(2): p. 642-51; discussion 651-2.
6. McKenzie, E.D., et al., The Blalock-Taussig shunt revisited: a contemporary experience. J Am Coll Surg, 2013. 216(4): p. 699-704; discussion 704-6.
7. Harrild, D.M., et al., Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation, 2009. 119(3): p. 445-51.
8. Helbing, W.A., et al., Right ventricular diastolic function in children with pulmonary regurgitation after repair of tetralogy of Fallot: volumetric evaluation by magnetic resonance velocity mapping. J Am Coll Cardiol, 1996. 28(7): p. 1827-35.
9. Bouzas, B., P.J. Kilner, and M.A. Gatzoulis, Pulmonary regurgitation: not a benign lesion. Eur Heart J, 2005. 26(5): p. 433-9.
10. Dabizzi, R.P., et al., Distribution and anomalies of coronary arteries in tetralogy of fallot. Circulation, 1980. 61(1): p. 95-102.
11. Bedair, R. and X. Iriart, EDUCATIONAL SERIES IN CONGENITAL HEART DISEASE: Tetralogy of Fallot: diagnosis to long-term follow-up. Echo Res Pract, 2019. 6(1): p. R9-r23.
12. Kilner, P.J., et al., Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J, 2010. 31(7): p. 794-805.
13. Therrien, J., et al., Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol, 2005. 95(6): p. 779-82.
14. Plein, S., et al., Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging, 2001. 14(3): p. 230-6.
15. Babu-Narayan, S.V., et al., Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation, 2006. 113(3): p. 405-13.
16. Munkhammar, P., et al., Restrictive right ventricular physiology after tetralogy of Fallot repair is associated with fibrosis of the right ventricular outflow tract visualized on cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging, 2013. 14(10): p. 978-85.
17. Chen, C.A., et al., Myocardial ECV Fraction Assessed by CMR Is Associated With Type of Hemodynamic Load and Arrhythmia in Repaired Tetralogy of Fallot. JACC Cardiovasc Imaging, 2016. 9(1): p. 1-10.
18. Bailliard, F. and R.H. Anderson, Tetralogy of Fallot. Orphanet J Rare Dis, 2009. 4: p. 2.
19. Murphy, J.G., et al., Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med, 1993. 329(9): p. 593-9.
20. Gatzoulis, M.A., et al., Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet, 2000. 356(9234): p. 975-81.
21. Therrien, J., G.R. Marx, and M.A. Gatzoulis, Late problems in tetralogy of Fallot--recognition, management, and prevention. Cardiol Clin, 2002. 20(3): p. 395-404.
22. Bouzas, B., P.J. Kilner, and M.A. Gatzoulis, Pulmonary regurgitation: not a benign lesion. European heart journal, 2005. 26(5): p. 433-439.
23. Geva, T., et al., Factors associated with impaired clinical status in long-term survivors of tetralogy of Fallot repair evaluated by magnetic resonance imaging. J Am Coll Cardiol, 2004. 43(6): p. 1068-74.
24. Geva, T., et al., Randomized trial of pulmonary valve replacement with and without right ventricular remodeling surgery. Circulation, 2010. 122(11 Suppl): p. S201-8.
25. Cheung, E.W., W.H. Wong, and Y.F. Cheung, Meta-analysis of pulmonary valve replacement after operative repair of tetralogy of fallot. Am J Cardiol, 2010. 106(4): p. 552-7.
26. Frigiola, A., et al., Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation, 2008. 118(14 Suppl): p. S182-90.
27. Oosterhof, T., et al., Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation, 2007. 116(5): p. 545-51.
28. Warnes, C.A., et al., ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease): developed in collaboration with the american society of echocardiography, heart rhythm society, international society for adult congenital heart disease, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation, 2008. 118(23): p. e714-e833.
29. Gatzoulis, M.A., et al., Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. The Lancet, 2000. 356(9234): p. 975-981.
30. Valente, A.M., et al., Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart, 2014. 100(3): p. 247-253.
31. Chaturvedi, R.R. and A.N. Redington, Pulmonary regurgitation in congenital heart disease. Heart, 2007. 93(7): p. 880-9.
32. Vliegen, H.W., et al., Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of fallot. Circulation, 2002. 106(13): p. 1703-7.
33. Jang, W., et al., Mid-term results of bioprosthetic pulmonary valve replacement in pulmonary regurgitation after tetralogy of Fallot repair. Eur J Cardiothorac Surg, 2012. 42(1): p. e1-8.
34. Samyn, M.M., et al., Range of ventricular dimensions and function by steady-state free precession cine MRI in repaired tetralogy of Fallot: right ventricular outflow tract patch vs. conduit repair. J Magn Reson Imaging, 2007. 26(4): p. 934-40.
35. Knauth, A.L., et al., Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart, 2008. 94(2): p. 211-6.
36. Ammash, N.M., et al., Pulmonary regurgitation after tetralogy of Fallot repair: clinical features, sequelae, and timing of pulmonary valve replacement. Congenit Heart Dis, 2007. 2(6): p. 386-403.
37. Meijboom, F.J., et al., Consequences of a selective approach toward pulmonary valve replacement in adult patients with tetralogy of Fallot and pulmonary regurgitation. J Thorac Cardiovasc Surg, 2008. 135(1): p. 50-5.
38. Geva, T., Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2006: p. 11-22.
39. Niezen, R.A., et al., Biventricular systolic function and mass studied with MR imaging in children with pulmonary regurgitation after repair for tetralogy of Fallot. Radiology, 1996. 201(1): p. 135-40.
40. Davlouros, P.A., et al., Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol, 2002. 40(11): p. 2044-52.
41. Corno, A.F., M.J. Kocica, and F. Torrent-Guasp, The helical ventricular myocardial band of Torrent-Guasp: potential implications in congenital heart defects. Eur J Cardiothorac Surg, 2006. 29 Suppl 1: p. S61-8.
42. Anderson, R.H., et al., The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur J Cardiothorac Surg, 2005. 28(4): p. 517-25.
43. Ho, S.Y. and P. Nihoyannopoulos, Anatomy, echocardiography, and normal right ventricular dimensions. Heart, 2006. 92 Suppl 1(Suppl 1): p. i2-13.
44. Helbing, W.A., et al., ECG predictors of ventricular arrhythmias and biventricular size and wall mass in tetralogy of Fallot with pulmonary regurgitation. Heart, 2002. 88(5): p. 515-9.
45. Weyman, A.E., et al., Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation, 1976. 54(2): p. 179-86.
46. Khairy, P., et al., Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation, 2008. 117(3): p. 363-70.
47. Ghai, A., et al., Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol, 2002. 40(9): p. 1675-80.
48. Fredriksen, P.M., et al., Aerobic capacity in adults with tetralogy of Fallot. Cardiol Young, 2002. 12(6): p. 554-9.
49. Diller, G.P., et al., Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation, 2005. 112(6): p. 828-35.
50. Kondo, C., et al., Left ventricular dysfunction on exercise long-term after total repair of tetralogy of Fallot. Circulation, 1995. 92(9 Suppl): p. Ii250-5.
51. Frigiola, A., et al., Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation, 2004. 110(11 Suppl 1): p. Ii153-7.
52. Giardini, A., et al., Impact of pulmonary regurgitation and right ventricular dysfunction on oxygen uptake recovery kinetics in repaired tetralogy of Fallot. Eur J Heart Fail, 2006. 8(7): p. 736-43.
53. Takken, T., et al., Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc, 2017. 14(Supplement_1): p. S123-s128.
54. Meadows, J., et al., Cardiac magnetic resonance imaging correlates of exercise capacity in patients with surgically repaired tetralogy of Fallot. Am J Cardiol, 2007. 100(9): p. 1446-50.
55. Carvalho, J.S., et al., Exercise capacity after complete repair of tetralogy of Fallot: deleterious effects of residual pulmonary regurgitation. Br Heart J, 1992. 67(6): p. 470-3.
56. Yang, M.C., et al., Assessing utility of exercise test in determining exercise prescription in adolescent and adult patients with repaired tetralogy of fallot. Heart Vessels, 2017. 32(2): p. 201-207.
57. Babu-Narayan, S.V., et al., Clinical outcomes of surgical pulmonary valve replacement after repair of tetralogy of Fallot and potential prognostic value of preoperative cardiopulmonary exercise testing. Circulation, 2014. 129(1): p. 18-27.
58. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.
59. Lambin, P., et al., Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012. 48(4): p. 441-6.
60. Shur, J.D., et al., Radiomics in Oncology: A Practical Guide. Radiographics, 2021. 41(6): p. 1717-1732.
61. Amano, Y., et al., Relationship between Extension or Texture Features of Late Gadolinium Enhancement and Ventricular Tachyarrhythmias in Hypertrophic Cardiomyopathy. Biomed Res Int, 2018. 2018: p. 4092469.
62. Cetin, I., et al., Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank. Front Cardiovasc Med, 2020. 7: p. 591368.
63. Neisius, U., et al., Radiomic Analysis of Myocardial Native T(1) Imaging Discriminates Between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging, 2019. 12(10): p. 1946-1954.
64. Aerts, H.J., et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014. 5: p. 4006.
65. Cheng, S., et al., LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol, 2018. 28(11): p. 4615-4624.
66. Raisi-Estabragh, Z., et al., Estimation of biological heart age using cardiovascular magnetic resonance radiomics. Scientific Reports, 2022. 12(1): p. 12805.
67. Zhang, X., et al., Cardiac magnetic resonance radiomics for disease classification. Eur Radiol, 2023. 33(4): p. 2312-2323.
68. Pu, C., et al., Identification of fibrosis in hypertrophic cardiomyopathy: a radiomic study on cardiac magnetic resonance cine imaging. Eur Radiol, 2023. 33(4): p. 2301-2311.
69. Cetin, I., et al., Radiomics signatures of cardiovascular risk factors in cardiac MRI: results from the UK Biobank. Frontiers in Cardiovascular Medicine, 2020. 7: p. 591368.
70. Zhang, J., et al., The Predictive Value of Myocardial Native T1 Mapping Radiomics in Dilated Cardiomyopathy: A Study in a Chinese Population. J Magn Reson Imaging, 2022.
71. Antonopoulos, A.S., et al., Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes. Scientific Reports, 2021. 11(1): p. 23596.
72. Neisius, U., et al., Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC: Cardiovascular Imaging, 2019. 12(10): p. 1946-1954.
73. Pelc, N.J., et al., Phase contrast cine magnetic resonance imaging. Magn Reson Q, 1991. 7(4): p. 229-54.
74. Gatehouse, P.D., et al., Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol, 2005. 15(10): p. 2172-84.
75. Mathew, R.C., A.I. Löffler, and M. Salerno, Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management. Curr Cardiol Rep, 2018. 20(11): p. 119.
76. Ricciardi, M., Principles and applications of the balanced steady-state free precession sequence in small animal low-field MRI. Vet Res Commun, 2018. 42(1): p. 65-86.
77. Nayak, K.S., et al., Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med, 2005. 53(6): p. 1468-73.
78. Carr, J.C., et al., Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology, 2001. 219(3): p. 828-34.
79. Messroghli, D.R., et al., Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med, 2004. 52(1): p. 141-6.
80. Kim, P.K., et al., Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J Radiol, 2017. 18(1): p. 113-131.
81. Bruce, R.A., Methods of exercise testing. Step test, bicycle, treadmill, isometrics. Am J Cardiol, 1974. 33(6): p. 715-20.
82. Cerqueira, M.D., et al., Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation, 2002. 105(4): p. 539-42.
83. van Griethuysen, J.J.M., et al., Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res, 2017. 77(21): p. e104-e107.
84. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 2011. 12: p. 2825-2830.
85. Cawley, G.C. and N.L. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation. The Journal of Machine Learning Research, 2010. 11: p. 2079-2107.
86. Tuan, S.H., et al., Comparison of Peak Oxygen Consumption During Exercise Testing Between Sexes Among Children and Adolescents in Taiwan. Front Pediatr, 2021. 9: p. 657551.
87. Wald, R.M., et al., Cardiac magnetic resonance markers of progressive RV dilation and dysfunction after tetralogy of Fallot repair. Heart, 2015. 101(21): p. 1724-30.
88. Rutz, T., et al., Evolution of right ventricular size over time after tetralogy of Fallot repair: a longitudinal cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging, 2017. 18(3): p. 364-370.
89. Luijnenburg, S.E., et al., 5-year serial follow-up of clinical condition and ventricular function in patients after repair of tetralogy of Fallot. Int J Cardiol, 2013. 169(6): p. 439-44.
90. Quail, M.A., et al., Impact of pulmonary valve replacement in tetralogy of Fallot with pulmonary regurgitation: a comparison of intervention and nonintervention. Ann Thorac Surg, 2012. 94(5): p. 1619-26.
91. Kozak, M.F., et al., Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study. Pediatr Radiol, 2014. 44(4): p. 403-9.
92. Yim, D., et al., Assessment of Diffuse Ventricular Myocardial Fibrosis Using Native T1 in Children With Repaired Tetralogy of Fallot. Circ Cardiovasc Imaging, 2017. 10(3).
93. Mikhail, A., et al., How pulmonary valve regurgitation after tetralogy of fallot repair changes the flow dynamics in the right ventricle: An in vitro study. Med Eng Phys, 2020. 83: p. 48-55.
94. Loke, Y.H., et al., Computational Modeling of Right Ventricular Motion and Intracardiac Flow in Repaired Tetralogy of Fallot. Cardiovasc Eng Technol, 2022. 13(1): p. 41-54.
95. Gnanappa, G.K., et al., Severe right ventricular dilatation after repair of Tetralogy of Fallot is associated with increased left ventricular preload and stroke volume. Eur Heart J Cardiovasc Imaging, 2019. 20(9): p. 1020-1026.
96. Gnanappa, G., et al., Increased left ventricular stroke volume in children and adults with repaired Tetralogy of Fallot (rTOF) and moderate-severe right ventricular dilatation. Heart, Lung and Circulation, 2015. 24: p. S432.
97. Nambiar, L., et al., Left ventricular end-diastolic volume predicts exercise capacity in patients with a normal ejection fraction. Clin Cardiol, 2018. 41(5): p. 628-633.
98. Meyer, M., et al., Relationship of exercise capacity and left ventricular dimensions in patients with a normal ejection fraction. An exploratory study. PLoS One, 2015. 10(3): p. e0119432.
99. Zhan, C., et al., Radiomic Analysis of Native T1 Mapping Images for Differential Diagnosis of Left Ventricular Hypertrophy Etiologies. Iranian Journal of Radiology, 2021. 18(4).
100. Fernandes, F.P., et al., Impaired left ventricular myocardial mechanics and their relation to pulmonary regurgitation, right ventricular enlargement and exercise capacity in asymptomatic children after repair of tetralogy of Fallot. J Am Soc Echocardiogr, 2012. 25(5): p. 494-503.
101. Broberg, C.S., et al., Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging, 2010. 3(6): p. 727-34.
102. Broberg, C.S., et al., Diffuse LV Myocardial Fibrosis and its Clinical Associations in Adults With Repaired Tetralogy of Fallot. JACC Cardiovasc Imaging, 2016. 9(1): p. 86-7.
103. Riesenkampff, E., et al., Increased left ventricular myocardial extracellular volume is associated with longer cardiopulmonary bypass times, biventricular enlargement and reduced exercise tolerance in children after repair of Tetralogy of Fallot. J Cardiovasc Magn Reson, 2016. 18(1): p. 75.
104. Senthilnathan, S., A. Dragulescu, and L. Mertens, Pulmonary Regurgitation after Tetralogy of Fallot Repair: A Diagnostic and Therapeutic Challenge. J Cardiovasc Echogr, 2013. 23(1): p. 1-9.
105. Cochet, H., et al., Focal scar and diffuse myocardial fibrosis are independent imaging markers in repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging, 2019. 20(9): p. 990-1003.
106. Yang, M.C., et al., Assessing Late Cardiopulmonary Function in Patients with Repaired Tetralogy of Fallot Using Exercise Cardiopulmonary Function Test and Cardiac Magnetic Resonance. Acta Cardiol Sin, 2015. 31(6): p. 478-84.
107. Dłużniewska, N., et al., Effect of ventricular function and volumes on exercise capacity in adults with repaired Tetralogy of Fallot. Indian Heart J, 2018. 70(1): p. 87-92.
(此全文20281105後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *