帳號:guest(52.14.151.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉芷彤
作者(外文):Liu, Chih-Tung
論文名稱(中文):胞外基質接觸對星狀膠質瘤球的集體機械傳感之影響
論文名稱(外文):The influence of ECM contacts on the collective machanosensing of glioma spheroid
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shou
口試委員(中文):江啟勳
李佳陽
口試委員(外文):Chiang, Chi-Shiun
Li, Chia-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:110012517
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:75
中文關鍵詞:細胞外基質細胞-ECM 相互作用多細胞模型機械信號傳感細胞骨架重組
外文關鍵詞:ECMCell-ECM interactionMulticellular modelMechanosensingCytoskeletal reorganization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細胞外基質(ECM)在調節細胞生理過程中扮演著關鍵的角色。透過細胞-細胞外基質界面,細胞能夠感應細胞外基質的刺激並啟動細胞內的訊號傳遞路徑。細胞與細胞外基質的相互作用已被廣泛研究,然而,從細胞外基質界面傳遞訊號至整個細胞集體的過程仍不完全瞭解。本研究旨在探討細胞外基質對膠質瘤球體的力學特性和細胞骨架重組的影響,以星狀膠質瘤球體作為多細胞模型系統。研究結果顯示,當膠質瘤球體與膠原蛋白局部的接觸後,球體的剛性顯著增加(~100%),並且在接觸後的數分鐘內就發生。相比之下,與透明質酸(HA)接觸的膠質瘤球體的剛性增加較小(~26%),顯示不同細胞外基質成分引起不同的反應。細胞牽引力顯微鏡觀察顯示,細胞球體與膠原蛋白間的牽引力比在細胞與透明質酸間的牽引力大,說明了細胞球體的剛性與細胞牽引力的正相關性。接著透過免疫螢光染色,發現肌動蛋白絲在細胞球體內的分佈隨時間從球體底部由下往上、由外向內的協調傳播,這表明在細胞球體內存在著協同反應。這些發現強調了細胞球體內部集體力學的感知。最後,透過細胞侵襲實驗,我們觀察到細胞球體僅與膠原蛋白局部接觸即可增強細胞球體的侵襲能力,這除了說明細胞外基質對於細胞球體行為發展的重要影響,也揭示了細胞機械特行的改變會對細胞行為發展產生影響。我們深入探討了細胞球體與細胞外基質之間相互作用的影響,並透過我們的模型揭示了細胞球體內部的機械信號傳感,這對於組織發育、維持穩定以及疾病進展的基本機制至關重要。我們預期這種認識對於再生醫學、組織工程和與細胞外基質相關疾病的研究具有重要意義。
The extracellular matrix (ECM) plays a crucial role in regulating cellular physiology and tumor progression. However, the mechanisms involved in the transmission of mechanical signals within cell collectives, specifically in glioma spheroids, remain unclear. This study aimed to investigate the effects of the ECM on the mechanical properties and cytoskeletal dynamics of glioma spheroids as an in vitro multicellular model system. Nano-indentation measurements showed a significant increase in spheroid stiffness (~100%) upon localized contact with collagen-coated substrates, indicating an immediate cellular response. In contrast, glioma spheroids in contact with hyaluronic acid (HA) exhibited a smaller stiffness increase (~26%), suggesting distinct responses to different ECM components. Cell traction force microscopy revealed higher cellular forces at the cell-collagen interface, which correlated with changes in spheroid stiffness. Confocal microscopy analysis demonstrated a coordinated pattern of cytoskeletal reorganization, propagating from the bottom to the top and from the outer to inner regions of the spheroids. Additionally, we observed that local contact with collagen enhanced the invasive capability of glioma spheroids, underscoring the significant impact of the ECM on the behavior of cellular collectives. These findings provide insights into the influence of the ECM on the mechanical properties and cytoskeletal dynamics of glioma spheroids. Understanding collective mechanosensing in multicellular systems contributes to our knowledge of tumor progression. Future investigations targeting ECM-mediated cellular behavior could lead to innovative therapeutic strategies for tumor control.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1. 前言 1
1-2. 研究方法 2
1-3. 本文架構 3
第二章 文獻回顧 4
2-1. 細胞力學 (Cell mechanics) 4
2-2. 三維腫瘤球體 ( 3D tumor spheroids) 5
2-3. 細胞間的連結 (Cell-cell junction) 6
2-4. 細胞外基質(Extracellular matrix, ECM) 7
2-5. 細胞的黏附作用 (Cell adhesions) 9
2-6. 細胞機械訊號傳導 (Cell mechanotransduction) 11
2-6-1. 細胞機械傳感 (Cell mechanosensing) 12
2-6-2. 細胞內的機械訊號傳遞(Cell mechanosignalling) 13
2-6-3. 相關的信號通路(Related signaling pathways) 16
2-7. 機械力的測量方式 (Measuring method of mechanical force) 19
2-8. 研究動機(Motivation) 20
第三章 材料與方法 21
3-1. 實驗材料與設備 21
3-2. 細胞培養 (Cell culture) 23
3-3. 三維細胞球培養 (Spheroid 3D Culture) 23
3-4. 細胞外基質製備與塗層 24
3-4-1. 膠原蛋白(Collagen Ⅰ)製備與塗層 24
3-4-2. 透明質酸(Hyaluronic acid, HA)製備與塗層 24
3-4-3. 膠原蛋白-透明質酸(Collagen-HA)製備與塗層 24
3-5. 3D細胞球體免疫螢光染色( Immunofluorescent staining of 3D cell spheroids) 25
3-6. 聚丙烯醯胺膠 (Polyacrylamide gel) 26
3-6-1. 蓋玻片前處理 26
3-6-2. 聚丙烯醯胺膠成形 26
3-6-3. 細胞外基質塗層 27
3-7. 細胞牽引力顯微鏡 (Traction force microscopy) 28
3-7-1 聚丙烯醯胺膠上嵌入螢光珠粒 28
3-7-2 顯微鏡拍攝 28
3-7-3 數據分析 28
3-8. 奈米壓痕測試 (Nanoindenter) 29
3-8-1. 數據分析 30
3-9. 細胞侵襲測試 (Cell invasion) 30
第四章 結果與討論 31
4-1. 細胞外基質透過局部接觸改變細胞球體的剛性 31
4-2. 膠原蛋白在五分鐘內顯著的提升了細胞球體的剛性 36
4-3. 細胞牽引力與細胞球體的剛性有正相關性 39
4-4. F-肌動蛋白在細胞球體內時空下的分布 43
4-5. 細胞球體內的機械訊號傳感為一個動態的過程 48
4-6. 細胞球體內的機械訊號傳感 51
4-7. 與膠原蛋白局部接觸降低了細胞球體侵襲的強度 62
第五章 結論 65
第六章 未來發展 66
文獻參考 67

1. Moeendarbary, E. and A.R. Harris, Cell mechanics: principles, practices, and prospects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014. 6(5): p. 371-388.
2. Rodriguez, M.L., P.J. McGarry, and N.J. Sniadecki, Review on cell mechanics: experimental and modeling approaches. Applied Mechanics Reviews, 2013. 65(6): p. 060801.
3. Fischer, T., A. Hayn, and C.T. Mierke, Effect of nuclear stiffness on cell mechanics and migration of human breast cancer cells. Frontiers in cell and developmental biology, 2020. 8: p. 393.
4. Zhu, Y., et al., 3D Tumor Spheroid and Organoid to Model Tumor Microenvironment for Cancer Immunotherapy. Organoids, 2022. 1(2): p. 149-167.
5. Han, S.J., S. Kwon, and K.S. Kim, Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer cell international, 2021. 21: p. 1-19.
6. Boot, R.C., G.H. Koenderink, and P.E. Boukany, Spheroid mechanics and implications for cell invasion. Advances in Physics: X, 2021. 6(1): p. 1978316.
7. Metzger, W., et al., Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. Materials Science and Engineering: C, 2017. 73: p. 310-318.
8. Jeon, S., et al., High‐precision 3D bio‐dot printing to improve paracrine interaction between multiple types of cell spheroids. Advanced Functional Materials, 2020. 30(52): p. 2005324.
9. Charras, G., Tensile forces and mechanotransduction at cell–cell junctions. Current Biology, 2018. 28(8): p. R445-R457.
10. https://highscope.ch.ntu.edu.tw/wordpress/?p=48385.
11. Li, S., et al., Carbenoxolone inhibits mechanical stress-induced osteogenic differentiation of mesenchymal stem cells by regulating p38 MAPK phosphorylation. Experimental and Therapeutic Medicine, 2018. 15(3): p. 2798-2803.
12. Clause, K.C. and T.H. Barker, Extracellular matrix signaling in morphogenesis and repair. Current opinion in biotechnology, 2013. 24(5): p. 830-833.
13. Karamanos, N.K., et al., A guide to the composition and functions of the extracellular matrix. The FEBS journal, 2021. 288(24): p. 6850-6912.
14. Deville, S.S. and N. Cordes, The extracellular, cellular, and nuclear stiffness, a trinity in the cancer resistome—a review. Frontiers in oncology, 2019. 9: p. 1376.
15. Holle, A.W., et al., Cell–extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano letters, 2018. 18(1): p. 1-8.
16. Zanotelli, M.R., J. Zhang, and C.A. Reinhart-King, Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell metabolism, 2021. 33(7): p. 1307-1321.
17. Liaudanskaya, V., D. Sood, and D.L. Kaplan, Mechanical Determinants of Tissue Development, in Principles of Regenerative Medicine. 2019.228: p. 391-404.
18. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature communications, 2020. 11(1): p. 5120.
19. Sun, B., The mechanics of fibrillar collagen extracellular matrix. Cell Reports Physical Science, 2021. 2(8): p. 100515.
20. Zeltz, C., J. Orgel, and D. Gullberg, Molecular composition and function of integrin-based collagen glues—introducing COLINBRIs. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014. 1840(8): p. 2533-2548.
21. Elango, J., et al., The Molecular interaction of collagen with cell receptors for biological function. Polymers, 2022. 14(5): p. 876.
22. Nusgens, B. Hyaluronic acid and extracellular matrix: a primitive molecule? in Annales de Dermatologie et de Vénéréologie. 2010.
23. Garantziotis, S. and R.C. Savani, Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biology, 2019. 78: p. 1-10.
24. Assunção, M., et al., Hyaluronic acid drives mesenchymal stromal cell-derived extracellular matrix assembly by promoting fibronectin fibrillogenesis. Journal of Materials Chemistry B, 2021. 9(35): p. 7205-7215.
25. De Conto, V.r., Importance du microenvironnement dans les modèles cérébraux in vitro pour le criblage phénotypique. 2021, Université de Lille.
26. Bignami, A., M. Hosley, and D. Dahl, Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anatomy and embryology, 1993. 188(5): p. 419-433.
27. Zancla, A., et al., A primer to traction force microscopy. Journal of Biological Chemistry, 2022.298(5): p. 101867.
28. Goldmann, W.H., Mechanotransduction and focal adhesions. Cell biology international, 2012. 36(7): p. 649-652.
29. Selig, M., et al., Mechanotransduction and stiffness-sensing: mechanisms and opportunities to control multiple molecular aspects of cell phenotype as a design cornerstone of cell-instructive biomaterials for articular cartilage repair. International journal of molecular sciences, 2020. 21(15): p. 5399.
30. Schwartz, M.A., Integrins and extracellular matrix in mechanotransduction. Cold Spring Harbor perspectives in biology, 2010. 2(12): p. a005066.
31. Martino, F., et al., Cellular mechanotransduction: from tension to function. Frontiers in physiology, 2018. 9: p. 824.
32. Danen, E.H., Integrins: an overview of structural and functional aspects. Madame Curie Bioscience Database [Internet], 2013.
33. Vining, K.H. and D.J. Mooney, Mechanical forces direct stem cell behaviour in development and regeneration. Nature reviews Molecular cell biology, 2017. 18(12): p. 728-742.
34. Sun, W., et al., Biophysical approaches for applying and measuring biological forces. Advanced Science, 2022. 9(5): p. 2105254.
35. Iskratsch, T., H. Wolfenson, and M.P. Sheetz, Appreciating force and shape—the rise of mechanotransduction in cell biology. Nature reviews Molecular cell biology, 2014. 15(12): p. 825-833.
36. Jansen, K., P. Atherton, and C. Ballestrem. Mechanotransduction at the cell-matrix interface. in Seminars in cell & developmental biology. 2017. 71: p. 75-83
37. Jaalouk, D.E. and J. Lammerding, Mechanotransduction gone awry. Nature reviews Molecular cell biology, 2009. 10(1): p. 63-73.
38. Kollimada Aiyappa, S., Study of the factors regulating traction force production by cells. 2020, Université Grenoble Alpes.
39. Lekka, M., et al., Traction force microscopy–Measuring the forces exerted by cells. Micron, 2021. 150: p. 103138.
40. Chen, C.S., J. Tan, and J. Tien, Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng., 2004. 6: p. 275-302.
41. Zuidema, A., W. Wang, and A. Sonnenberg, Crosstalk between cell adhesion complexes in regulation of mechanotransduction. Bioessays, 2020. 42(11): p. 2000119.
42. Olson, M.F., Actin-Myosin Cytoskeleton Regulation and Function. 2022, 12(1). p. 9.
43. Cooper, G.M., Structure and organization of actin filaments. The cell: a molecular approach, 2000. 2.
44. Cytoskeleton, A., et al., CYTOSKELETON NEWS. 2021.
45. Svitkina, T., The actin cytoskeleton and actin-based motility. Cold Spring Harbor perspectives in biology, 2018. 10(1): p. a018267.
46. Ohashi, K., S. Fujiwara, and K. Mizuno, Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. The journal of biochemistry, 2017. 161(3): p. 245-254.
47. Moujaber, O. and U. Stochaj, The cytoskeleton as regulator of cell signaling pathways. Trends in biochemical sciences, 2020. 45(2): p. 96-107.
48. Pollard, T.D., R.R. Weihing, and M. Adelman, Actin and myosin and cell movemen. CRC critical reviews in biochemistry, 1974. 2(1): p. 1-65.
49. Aguilar-Cuenca, R., A. Juanes-García, and M. Vicente-Manzanares, Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer. Cellular and molecular life sciences, 2014. 71: p. 479-492.
50. Guan, G., et al., Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes, 2023. 14(2): p. 272.
51. Burridge, K., E. Monaghan-Benson, and D.M. Graham, Mechanotransduction: from the cell surface to the nucleus via RhoA. Philosophical Transactions of the Royal Society B, 2019. 374(1779): p. 20180229.
52. Johan, M.Z. and M.S. Samuel, Rho–ROCK signaling regulates tumor-microenvironment interactions. Biochemical Society Transactions, 2019. 47(1): p. 101-108.
53. Modaresifar, K., et al., Mechanotransduction in high aspect ratio nanostructured meta-biomaterials: The role of cell adhesion, contractility, and transcriptional factors. Materials Today Bio, 2022. 16: p. 100448.
54. Mosaddeghzadeh, N. and M.R. Ahmadian, The RHO family GTPases: mechanisms of regulation and signaling. Cells, 2021. 10(7): p. 1831.
55. Schmandke, A., A. Schmandke, and S.M. Strittmatter, ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. The Neuroscientist, 2007. 13(5): p. 454-469.
56. Deng, Z., et al., RhoA/ROCK pathway: implication in osteoarthritis and therapeutic targets. American Journal of Translational Research, 2019. 11(9): p. 5324.
57. Hartmann, S., A.J. Ridley, and S. Lutz, The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Frontiers in pharmacology, 2015. 6: p. 276.
58. Fu, M., et al., The Hippo signalling pathway and its implications in human health and diseases. Signal Transduction and Targeted Therapy, 2022. 7(1): p. 376.
59. Ortega, Á., et al., The YAP/TAZ signaling pathway in the tumor microenvironment and carcinogenesis: Current knowledge and therapeutic promises. International Journal of Molecular Sciences, 2022. 23(1): p. 430.
60. Boopathy, G.T. and W. Hong, Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Frontiers in cell and developmental biology, 2019. 7: p. 49.
61. Polacheck, W.J. and C.S. Chen, Measuring cell-generated forces: a guide to the available tools. Nature methods, 2016. 13(5): p. 415-423.
62. Korobchevskaya, K., et al., Extended mechanical force measurements using structured illumination microscopy. Philosophical Transactions of the Royal Society A, 2021. 379(2199): p. 20200151.
63. Kai, F., A.P. Drain, and V.M. Weaver, The extracellular matrix modulates the metastatic journey. Developmental cell, 2019. 49(3): p. 332-346.
64. https://sites.google.com/site/qingzongtseng/imagej-plugins?authuser=0
65. Yang, L., et al., A tailored extracellular matrix (ECM)-Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials, 2021. 276: p. 121055.
66. Xu, Q., et al., Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Materials Science and Engineering: R: Reports, 2021. 146: p. 100641.
67. Pompili, S., et al., The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall. Frontiers in Medicine, 2021. 8: p. 610189.
68. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. Journal of cell science, 2010. 123(24): p. 4195-4200.
69. Krueger-Genge, A., et al., Effects of different components of the extracellular matrix on endothelialization. Clinical hemorheology and microcirculation, 2016. 64(4): p. 867-874.
70. Galie, P.A., P.C. Georges, and P.A. Janmey, How do cells stiffen? Biochemical Journal, 2022. 479(17): p. 1825-1842.
71. Pogoda, K., et al., Soft substrates containing hyaluronan mimic the effects of increased stiffness on morphology, motility, and proliferation of glioma cells. Biomacromolecules, 2017. 18(10): p. 3040-3051.
72. Solon, J., et al., Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical journal, 2007. 93(12): p. 4453-4461.
73. Yang, L., et al., Topography induced stiffness alteration of stem cells influences osteogenic differentiation. Biomaterials science, 2020. 8(9): p. 2638-2652.
74. Janmey, P.A., D.A. Fletcher, and C.A. Reinhart-King, Stiffness sensing by cells. Physiological reviews, 2020. 100(2): p. 695-724.
75. Tang, V.W., Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Molecular biology of the cell, 2020. 31(17): p. 1823-1834.
76. Gardel, M.L., et al., Mechanical integration of actin and adhesion dynamics in cell migration. Annual review of cell and developmental biology, 2010. 26: p. 315-333.
77. Icard-Arcizet, D., et al., Cell stiffening in response to external stress is correlated to actin recruitment. Biophysical journal, 2008. 94(7): p. 2906-2913.
78. Mundhara, N., A. Majumder, and D. Panda, Methyl-β-cyclodextrin, an actin depolymerizer augments the antiproliferative potential of microtubule-targeting agents. Scientific Reports, 2019. 9(1): p. 7638.
79. Alisafaei, F., et al., Long-range mechanical signaling in biological systems. Soft matter, 2021. 17(2): p. 241-253.
80. Stamenović, D. and N. Wang, Stress transmission within the cell. Comprehensive Physiology, 2011. 1(1): p. 499.
81. Khoonkari, M., et al., Physics of brain cancer: Multiscale alterations of glioblastoma cells under extracellular matrix stiffening. Pharmaceutics, 2022. 14(5): p. 1031.
82. Boraschi-Diaz, I., et al., Collagen type I as a ligand for receptor-mediated signaling. Frontiers in Physics, 2017. 5: p. 12.
83. Mandal, K., et al., Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS nano, 2018. 13(1): p. 203-214.
84. Sarangi, B.R., et al., Coordination between intra-and extracellular forces regulates focal adhesion dynamics. Nano letters, 2017. 17(1): p. 399-406.
85. Misra, S., et al., Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in immunology, 2015. 6: p. 201.
86. Naor, D., R.V. Sionov, and D. Ish-Shalom, CD44: structure, function and association with the malignant process. Advances in cancer research, 1997. 71: p. 241-319.
87. Chen, C., et al., The biology and role of CD44 in cancer progression: therapeutic implications. Journal of hematology & oncology, 2018. 11: p. 1-23.
88. Schnauß, J., et al., Influence of hyaluronic acid binding on the actin cortex measured by optical forces. Journal of Biophotonics, 2020. 13(7): p. e201960215.
89. Rheinlaender, J., H. Wirbel, and T.E. Schäffer, Spatial correlation of cell stiffness and traction forces in cancer cells measured with combined SICM and TFM. Rsc Advances, 2021. 11(23): p. 13951-13956.
90. Jones, M.C., J. Zha, and M.J. Humphries, Connections between the cell cycle, cell adhesion and the cytoskeleton. Philosophical Transactions of the Royal Society B, 2019. 374(1779): p. 20180227.
91. Legerstee, K. and A.B. Houtsmuller, A layered view on focal adhesions. Biology, 2021. 10(11): p. 1189.
92. Romet-Lemonne, G. and A. Jégou, Mechanotransduction down to individual actin filaments. European journal of cell biology, 2013. 92(10-11): p. 333-338.
93. Svitkina, T.M., Ultrastructure of the actin cytoskeleton. Current opinion in cell biology, 2018. 54: p. 1-8.
94. Chen, M., et al., Effect of F-actin organization in lamellipodium on viscoelasticity and migration of Huh-7 cells under pH microenvironments using AM-FM atomic force microscopy. Frontiers in Physics, 2021. 9: p. 674958.
95. Sutlive, J., et al., Generation, transmission, and regulation of mechanical forces in embryonic morphogenesis. Small, 2022. 18(6): p. 2103466.
96. https://www.mechanobio.info/what-is-mechanobiology/how-does-the-cytoskeleton-transmit-mechanical-forces/#ITEM-2234-0.
97. Wang, N. and Z. Suo, Long-distance propagation of forces in a cell. Biochemical and biophysical research communications, 2005. 328(4): p. 1133-1138.
98. Young, K.M. and C.A. Reinhart-King, Cellular mechanosignaling for sensing and transducing matrix rigidity. Current Opinion in Cell Biology, 2023. 83: p. 102208.
99. Kirby, T.J. and J. Lammerding, Emerging views of the nucleus as a cellular mechanosensor. Nature cell biology, 2018. 20(4): p. 373-381.
100. Trepat, X., et al., Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2004. 287(5): p. L1025-L1034.
101. Kim, S.-O., et al., Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. Nano convergence, 2017. 4(1): p. 1-8.
102. Ahmed, W.W., É. Fodor, and T. Betz, Active cell mechanics: Measurement and theory. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2015. 1853(11): p. 3083-3094.
103. Urciuoli, E. and B. Peruzzi, Involvement of the FAK network in pathologies related to altered mechanotransduction. International Journal of Molecular Sciences, 2020. 21(24): p. 9426.
104. Fabry, B., et al., Focal adhesion kinase stabilizes the cytoskeleton. Biophysical journal, 2011. 101(9): p. 2131-2138.
105. Stricker, J., et al., Myosin II-mediated focal adhesion maturation is tension insensitive. PloS one, 2013. 8(7): p. e70652.
106. Srinivasan, S., et al., Blockade of ROCK inhibits migration of human primary keratinocytes and malignant epithelial skin cells by regulating actomyosin contractility. Scientific Reports, 2019. 9(1): p. 19930.
107. Kim, S., et al., Rho-kinase as a target for cancer therapy and its immunotherapeutic potential. International journal of molecular sciences, 2021. 22(23): p. 12916.
108. Shen, M., et al., Discovery of novel ROCK1 inhibitors via integrated virtual screening strategy and bioassays. Scientific reports, 2015. 5(1): p. 16749.
109. Knipe, R.S., A.M. Tager, and J.K. Liao, The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacological reviews, 2015. 67(1): p. 103-117.
110. Harris, A.R., P. Jreij, and D.A. Fletcher, Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. Annual review of biophysics, 2018. 47: p. 617-631.
111. Hohmann, T. and F. Dehghani, The cytoskeleton—a complex interacting meshwork. Cells, 2019. 8(4): p. 362.
112. Peng, G.E., S.R. Wilson, and O.D. Weiner, A pharmacological cocktail for arresting actin dynamics in living cells. Molecular biology of the cell, 2011. 22(21): p. 3986-3994.
113. Okamoto, T., et al., Gap junction-mediated regulation of endothelial cellular stiffness. Scientific reports, 2017. 7(1): p. 6134.
114. Liu, W., et al., Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. International journal of oral science, 2020. 12(1): p. 17.
115. Mettang, M., et al., Blocking distinct interactions between Glioblastoma cells and their tissue microenvironment: A novel multi-targeted therapeutic approach. Scientific reports, 2018. 8(1): p. 5527.
116. Salameh, A. and S. Dhein, Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(1): p. 147-156.
117. Vicario, N., et al., Connexins in the central nervous system: physiological traits and neuroprotective targets. Frontiers in physiology, 2017. 8: p. 1060.
118. He, X., B. Lee, and Y. Jiang, Cell-ECM interactions in tumor invasion. Systems Biology of Tumor Microenvironment: Quantitative Modeling and Simulations, 2016: p. 73-91.
119. Peralta, M., N. Osmani, and J.G. Goetz, Circulating tumor cells: Towards mechanical phenotyping of metastasis. Iscience, 2022: p. 103969.
120. Baskaran, J.P., et al., Cell shape, and not 2D migration, predicts extracellular matrix-driven 3D cell invasion in breast cancer. APL bioengineering, 2020. 4(2): p. 026105.
121. Kang, W., et al., Tumor invasion as non-equilibrium phase separation. BioRxiv, 2020: p. 2020.04. 28.066845.

(此全文20250801後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *