帳號:guest(18.118.154.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃明月
作者(外文):Huang, Ming-Yueh
論文名稱(中文):鐵電超晶格氧化鉿鋯鰭式電晶體非揮發式記憶體及其氧氮化鋁介面層之研究
論文名稱(外文):Comprehensive Study of HfO2/ZrO2 Superlattice Dieletric and High-k AlON Interfacial Layer on Ferroelectric FinFET Memory
指導教授(中文):吳永俊
指導教授(外文):Wu, Yung-Chun
口試委員(中文):朱鵬維
侯福居
口試委員(外文):Chu, Peng-Wei
Hou, Fu-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011555
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:71
中文關鍵詞:鐵電記憶體非揮發式記憶體鰭式電晶體超晶格氧化鉿鋯氧氮化鋁
外文關鍵詞:FeFETNon-volitile memoryFinFETSL HZOAlON
相關次數:
  • 推薦推薦:0
  • 點閱點閱:238
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這項研究中,我們首先製作了兩種不同材料的金屬-鐵電層-金屬 (MFM) 電容器,分別是以12奈米厚的傳統氧化鉿鋯(Hf0.5Zr0.5O2)和超晶格氧化鉿鋯 (HfO2/ZrO2 Superlattice,SL-HZO) 作為鐵電層。我們以傳統氧化鉿鋯電容器作為對照組,對新型材料超晶格氧化鉿鋯 (SL-HZO) 電容器進行了鐵電特性的探討並對其進行材料分析。在確定超晶格氧化鉿鋯 (SL-HZO) 適合作為鐵電材料的選擇後,我們進一步將其實際應用在鐵電鰭式場效電晶體非揮發式記憶體(Fe-FinFET Memory)中。然而,考慮到介面層的品質對記憶體性能尤為重要,因此我們也進行了不同介面層材料的比較。具體而言,我們共製作了四種不同條件的元件。其中,使用二氧化矽(SiO2)和氧氮化鋁 (AlON) 作為介面層,並分別搭配傳統氧化鉿鋯 (HZO) 和超晶格氧化鉿鋯 (SL-HZO) 作為鐵電層。接著,我們對這些元件的特性和可靠性進行了全面的測試。
這項研究的目的是為了深入了解超晶格氧化鉿鋯 (SL-HZO) 在鐵電元件中的表現,同時也探討了不同介面層材料對記憶體性能的影響。透過這些測試和分析,我們期望為未來鐵電記憶體技術的發展提供有價值的參考和指導。
在電容測試的結果中,與傳統氧化鉿鋯 (HZO) 相比,超晶格氧化鉿鋯 (SL-HZO) 電容器顯示出更大的殘餘極化向量 (Remnant Polarization, Pr) ,並在耐用度 (Endurance) 測試操作數個循環 (Cycles) 後,仍維持較優異的鐵電特性。且若將前述兩種鐵電材料應用在鰭式電晶體非揮發式記憶體時,也會有相符的結果,使用超晶格氧化鉿鋯 (SL-HZO) 作為鐵電層的元件,有較大的記憶窗口表現 (Memory Window, MW)。而又以使用氧氮化鋁 (AlON) 搭配超晶格氧化鉿鋯 (SL-HZO) 的元件有最大的記憶窗口 (MW)。這是由於疊加在氧氮化鋁 (AlON) 上的鐵電層有較好的結晶特性。此外,值得注意的是,氧氮化鋁高介電常數 (High-k) 的性質,可降低在介面層 (Interfacial Layer, IL) 的跨壓,並使電壓更有效率的跨壓在鐵電層中,因此擁有較低的操作電壓,而降低了所需的功耗。總的來說,具備氧氮化鋁介面層 (AlON IL) 的超晶格氧化鉿鋯鰭式場效電晶體非揮發性記憶體 (SL-HZO FinFET Memory) 釋放了FeFET記憶體的潛力,實現了低功耗和大記憶窗口 (MW) 的雙重效果。這項研究為未來發展更加節能高效且容量更大的記憶體裝置開啟了新的可能性。
In this study, we first fabricated metal-ferroelectric-metal (MFM) capacitors with two different materials as the ferroelectric layer: a 12 nm-thick conventional hafnium zirconium oxide (HZO) and a 12 nm-thick hafnium oxide - zirconium oxide superlattice (SL-HZO). The conventional HZO capacitors were used as the control group for comparison, while the novel meterial SL-HZO capacitors were investigated for their ferroelectric characteristics. After determining that SL-HZO was a suitable choice for the ferroelectric material, we proceeded to incorporate it into ferroelectric FinFET non-volatile memory (Fe-FinFET Memory). As the quality of the interface layer (IL) greatly affects memory performance, we also conducted comparisons with different IL materials. In total, we fabricated four different device configurations. Two IL materials, silicon dioxide (SiO2) and aluminum oxynitride (AlON), were used in conjunction with both the conventional HZO and the SL-HZO. Comprehensive testing was performed to analyze the characteristics and reliability of these devices.
The main objectives of this research were to gain a deeper understanding of the performance of the SL-HZO in ferroelectric devices and to explore the effects of different interface layer materials on memory performance. Through thorough testing and analysis, we aimed to provide valuable insights and guidance for the future development of ferroelectric memory technology.
In the results of the capacitor testing, the SL-HZO capacitors demonstrated a larger remnant polarization (Pr) compared to the conventional HZO capacitors. Furthermore, even after endurance testing with multiple cycles, the SL-HZO capacitors maintained superior ferroelectric characteristics. These findings were also consistent when applying both ferroelectric materials to Fe-FinFET memory, where the devices with the SL-HZO as the ferroelectric layer exhibited a larger memory window (MW). Moreover, the combination of AlON as the IL with the SL-HZO as the ferroelectric layer demonstrated the largest MW, attributed to the better crystalline properties of the ferroelectric layer deposited on AlON. Additionally, the high dielectric constant (High-k) property of AlON reduced the voltage drop across the IL, allowing more efficient voltage to be applied to the ferroelectric layer, resulting in lower operating voltage and reduced power consumption.
In conclusion, the SL-HZO FinFET memory with the AlON IL exhibited the potential to unlock FeFET memory capabilities, achieving both low power consumption and a large MW. This research opens up new possibilities for developing more energy-efficient, high-performance, and larger-capacity memory devices in the future.
中 文 摘 要 i
Abstract iii
致謝 v
目錄 vii
表目錄 ix
圖目錄 x
Chapter 1 緒論 1
1.1 電晶體的微縮 (Scaling of transistor) 1
1.1.1 摩爾定律 (Moore’s Law) 1
1.1.2 微縮面臨的挑戰 (Challenges of Device Scaling) 2
1.1.3 超越摩爾定律 (More Moore and More than Moore) 3
1.2 鰭式電晶體 (Fin Field-Effect Transistor) 6
1.3 鐵電電晶體非揮發性記憶體(FeFET Non-Volatile Memory) 8
1.3.1 馮紐曼瓶頸 (Von Neumann Bottleneck) 8
1.3.2 鐵電電晶體非揮發式記憶體 (Fe-FET Non-Volatile Memory) 10
Chapter 2 機制探討 13
2.1 二氧化鉿基的鐵電材料(HfO2-based Ferroelectric Material) 13
2.2 量測方法造成的影響 17
2.3 電荷捕捉效應 19
2.4 介面層造成的影響 21
Chapter 3 鐵電鰭式電晶體非揮發式記憶體 23
3.1 實驗動機 (Motivation) 23
3.2 超晶格氧化鉿鋯電容測試 (HfO2/ZrO2 Superlattice Capacitor Test) 27
3.2.1 製程步驟 (Capacitor Fabrication) 27
3.2.2 結果與討論 (Results and Discussion) 30
3.3 超晶格氧化鉿鋯鰭式電晶體非揮發式記憶體 (SL-HZO FinFET) 40
3.3.1 製程步驟 (Device Fabrication) 40
3.3.2 結果與討論 (Results and Discussion) 43
Chapter 4 結論與未來展望 65
4.1 結論 (Conclusion) 65
4.2 未來展望 (Future Work) 67
參考文獻 68
[1] International Roadmap for Devices and Systems (IRDS™) 2022 Edition Executive Summary: https://irds.ieee.org/editions/2022
[2] International Roadmap for Devices and Systems (IRDS™) 2022 Update More Than Moore White Paper: https://irds.ieee.org/editions/2022
[3] IEEE Spectrum. [Online]. Available: https://spectrum.ieee.org/
[4] BYJU’S EXAM PREP Von Neumann Architecture. [Online]. Available:https://byjus.com/gate/von-neumann-architecture-notes/
[5] Knowledge share Method For Low Power Logic In Memory Circuits. [Online]. Available: https://www.knowledge-share.eu/en/patent/method-for-low-power-logic-in-memory-circuits/
[6] Christopher Henderson, “Info Tracks Semitracks Monthly Newsletter,” April Newsletter, 2011.
[7] Mikolajick, T., Slesazeck, S., Park, M., & Schroeder, U. “Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors,” MRS Bulletin, 43(5), 340-346. doi:10.1557/mrs.2018.92
[8] M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017, doi: 10.1039/c7tc01200d.
[9] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012, doi: 10.1021/nl302049k.
[10] M.-S. Yeh, Y.-C. Wu, M.-H. Wu, Y.-R. Jhan, M.-H. Chung, and M.-F. Hung, “High Performance Ultra-Thin Body (2.4nm) Poly-Si Junctionless Thin Film Transistors with a Trench Structure,” 2019 IEEE International Electron Devices Meeting, 2014, pp. 26.6.1-26.6.4, doi: 10.1109/IEDM.2014.7047115.
[11] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick ,and S. Slesazeck, “Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs,” in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, Sept. 2020, doi: 10.1109/LED.2020.3007220.
[12] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, “Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance,” in IEEE Transactions on Electron Devices, vol. 65, no.6, pp.2461- 2469, June 2018, doi: 10.1109/TED.2018.2829122.
[13] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, “Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer,” Applied Physics Letters, vol. 118, issue 10, pp. 103503, 2021, doi: 10.1063/5.0036824
[14] Y. Peng et al., "HfO2-ZrO2 Superlattice Ferroelectric Capacitor With Improved Endurance Performance and Higher Fatigue Recovery Capability," in IEEE Electron Device Letters, vol. 43, no. 2, pp. 216-219, Feb. 2022, doi: 10.1109/LED.2021.3135961
[15] Y. -K. Liang et al., "ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability," in IEEE Electron Device Letters, vol. 43, no. 9, pp. 1451-1454, Sept. 2022, doi: 10.1109/LED.2022.3193383.
[16] Venkateswarlu Gaddam, Giuk Kim, Taeho Kim, Minhyun Jung, Chaeheon Kim, and Sanghun Jeon, “Novel Approach to High κ (∼59) and Low EOT (∼3.8 Å) near the Morphotrophic Phase Boundary with AFE/FE (ZrO2/HZO) Bilayer Heterostructures and High-Pressure Annealing,” ACS Applied Materials & Interfaces 2022, doi: 10.1021/acsami.2c08691.
[17] Stephen L. Weeks, Ashish Pal, Vijay K. Narasimhan, Karl A. Littau, and Tony Chiang, “Engineering of Ferroelectric HfO2–ZrO2 Nanolaminates,” ACS Applied Materials & Interfaces 2017, doi: 10.1021/acsami.7b00776.
[18] Kim, Han Joon, et al. "Grain size engineering for ferroelectric Hf0. 5Zr0. 5O2 films by an insertion of Al2O3 interlayer," Applied Physics Letters 105.19 (2014).
[19] S.-C. Yan, G.-M. Lan, C.-J. Sun, Y.-H. Chen, C.-H. Wu, H.-K. Peng, Y.-H. Lin, Y.-H. Wu, and Y.-C. Wu, “High Speed and Large Memory Window Ferroelectric HfZrO₂ FinFET for High-Density Nonvolatile Memory,” IEEE Electron Device Letters, vol. 42, no. 9, pp. 1307-1310, 2021.
[20] S.-C. Yan, C.-H. Wu, C.-J. Sun, X.-C. Zhong, C.-S. Chang, H.-K. Peng, Y.-H. Wu, and Y.-C. Wu, “Multilevel Cell Ferroelectric HfZrO FinFET With High Speed and Large Memory Window Using AlON Interfacial Layer,” IEEE Electron Device Letters, vol. 44, no. 1, pp. 44-47, 2023.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *