|
[1] "International Roadmap for Devices and Systems (IRDS™) 2022 Edition." https://irds.ieee.org/editions/2022/executive-summary (accessed 2023). [2] D. Hisamoto et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000, doi: 10.1109/16.887014. [3] "International Roadmap for Devices and Systems (IRDS™) 2020 Edition." https://irds.ieee.org/editions/2020/more-moore (accessed 2023). [4] K. J. Kuhn, A. Murthy, R. Kotlyar, and M. Kuhn, "(Invited) Past, Present and Future: SiGe and CMOS Transistor Scaling," ECS Transactions, vol. 33, no. 6, p. 3, 2010/10/01 2010, doi: 10.1149/1.3487530. [5] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, "Strain dependence of the performance enhancement in strained-Si n-MOSFETs," in Proceedings of 1994 IEEE International Electron Devices Meeting, 11-14 Dec. 1994 1994, pp. 373-376, doi: 10.1109/IEDM.1994.383389. [6] K. Rim et al., "Strained Si NMOSFETs for high performance CMOS technology," in 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184), 12-14 June 2001 2001, pp. 59-60, doi: 10.1109/VLSIT.2001.934946. [7] A. Agrawal et al., "Gate-All-Around Strained Si0.4Ge0.6 Nanosheet PMOS on Strain Relaxed Buffer for High Performance Low Power Logic Application," presented at the 2020 IEEE International Electron Devices Meeting (IEDM), 2020. [8] E. S. Cor Claeys, Ed. Germanium-Based Technologies From Materials to Devices, 1st ed. (Chapter 11. Advanced Germanium MOS Devices (C. On Chui, K.C. Saraswat).). (in English), p. 480. [9] K. Ismail, J. O. Chu, and B. S. Meyerson, "High hole mobility in SiGe alloys for device applications," Applied Physics Letters, vol. 64, no. 23, pp. 3124-3126, 1994, doi: 10.1063/1.111367. [10] M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," Journal of Applied Physics, vol. 80, no. 4, pp. 2234-2252, 1996, doi: 10.1063/1.363052. [11] G. Hellings et al., "Si/SiGe superlattice I/O finFETs in a vertically-stacked Gate-All-Around horizontal Nanowire Technology," in 2018 IEEE Symposium on VLSI Technology, 18-22 June 2018 2018, pp. 85-86, doi: 10.1109/VLSIT.2018.8510654. [12] Y.-L. Li et al., "Improved Electrical Characteristics of Bulk FinFETs With SiGe Super-Lattice-Like Buried Channel," IEEE Electron Device Letters, vol. 40, no. 2, pp. 181-184, 2019, doi: 10.1109/led.2018.2890535. [13] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 5-8 June 2017 2017, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183. [14] S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. 2016. [15] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09. Synopsys, Inc., Mountain View, CA, USA. [16] A. Es-Sakhi and M. H. Chowdhury, "Analytical model to estimate the subthreshold swing of SOI FinFET," in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), 8-11 Dec. 2013 2013, pp. 52-55, doi: 10.1109/ICECS.2013.6815343. [17] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, 2012. [18] Y. Min et al., "Hybrid-orientation technology (HOT): opportunities and challenges," IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 965-978, 2006, doi: 10.1109/TED.2006.872693. [19] G. Wang, Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond Springer, 2019. [20] S. A. Mala, L. Tsybeskov, D. J. Lockwood, X. Wu, and J. M. Baribeau, "Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation," Journal of Applied Physics, vol. 116, no. 1, 2014, doi: 10.1063/1.4886598. [21] M.-H. Cheng, Strain Studies of Silicon-Germanium Hetero-Epitaxial Layer by X-ray Reciprocal Space Mapping. 2007. [22] M. Wormington et al., "Asymmetric Relaxation of SiGe in Patterned Si Line Structures," AIP Conference Proceedings, vol. 931, no. 1, pp. 220-225, 2007, doi: 10.1063/1.2799374. [23] K. Cheng et al., "High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained SiGe channel PFET," in 2012 International Electron Devices Meeting, 10-13 Dec. 2012 2012, pp. 18.1.1-18.1.4, doi: 10.1109/IEDM.2012.6479063. [24] "Chapter 2 - Strain, stability, reliability and growth," in Semiconductors and Semimetals, vol. 74, S. C. Jain and M. Willander Eds.: Elsevier, 2003, pp. 9-40. [25] K. Shahzad, D. J. Olego, and D. A. Cammack, "Thickness dependence of strains in strained‐layer superlattices," Applied Physics Letters, vol. 52, no. 17, pp. 1416-1418, 1988, doi: 10.1063/1.99133. [26] R. P. G. Karunasiri and K. L. Wang, "Quantum devices using SiGe/Si heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 4, pp. 2064-2071, 1991, doi: 10.1116/1.585778. [27] K. Arimoto et al., "Hole mobility enhancement observed in (110)-oriented strained Si," Japanese Journal of Applied Physics, vol. 59, no. SG, p. SGGK06, 2020/02/07 2020, doi: 10.7567/1347-4065/ab6591. [28] W. T. Chang, M. H. Li, C. H. Hsu, W. C. Lin, and W. K. Yeh, "Modifying Threshold Voltages to n- and p- Type FinFETs by Work Function Metal Stacks," IEEE Open Journal of Nanotechnology, vol. 2, pp. 72-77, 2021, doi: 10.1109/OJNANO.2021.3109897. [29] M. S. Kavrik et al., "Ultralow Defect Density at Sub-0.5 nm HfO2/SiGe Interfaces via Selective Oxygen Scavenging," ACS Applied Materials & Interfaces, vol. 10, no. 36, pp. 30794-30802, 2018/09/12 2018, doi: 10.1021/acsami.8b06547. [30] Y.-W. Lin et al., "Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor," Applied Physics Letters, vol. 117, no. 26, 2020, doi: 10.1063/5.0029628. [31] S. Ogawa et al., "Insights into thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers," Journal of Applied Physics, vol. 118, no. 23, 2015, doi: 10.1063/1.4937573.
|