帳號:guest(3.133.124.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏銨
作者(外文):Chen,Bo-An
論文名稱(中文):自我對準垂直堆疊鍺奈米線互補式場效電晶體之研究
論文名稱(外文):Study of Self-aligned stacked Germanium Nanowire Complementary Field-Effect-Transistors
指導教授(中文):吳永俊
指導教授(外文):Wu, Yung-Chun
口試委員(中文):侯福居
朱鵬維
口試委員(外文):Hou, Fu-Ju
Chu, Peng-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011543
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:電晶體互補式場效電晶體鍺奈米線
外文關鍵詞:TransistorsComplementary Field-Effect-TransistorsGermanium NanowireGermanium
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,不論是雲端網路以及物聯網等的發展都逐漸普及且成熟,因此在科技與半導體產業的發展也越來越快。而在半導體產業中隨著摩爾定律的發展,在一個集成電路上我們期望可以放置更高密集且低功耗的元件,然而傳統的FinFET半導體結構已經逐漸遇到物理上的極限以及製程技術的困難。為了改善元件結構微縮上的問題,許多研究團隊紛紛提出許多可以持續摩爾定律發展的研究,例如:使用更高載子遷移率的通道材料(如:矽鍺、鍺、三五族化合物等)來取代傳統的通道材料矽,或是透過二維及三維的電晶體結構來改善並提高元件的性能。
在本研究中,我們提出自我對準的製程技術來做出上層為鍺(110)表面取向的方形鍺奈米線作為PFET,以及下層為鍺(111)表面取向的菱形鍺奈米線結構作為NFET的互補式場效電晶體(Complementary Field-Effect Transistor, CFET),透過此CFET的結構,可以有效地將元件尺寸微縮一半,此外我們透過單一金屬閘極來有效的簡化此結構的製程,且在CFET結構的PFET與NFET中,當|VD| = 0.05V時,其ION/IOFF值分別為1.72⨯105與1.57⨯106,其SS最小值(SSmin)分別為104 mV/dec與110 mV/dec,而在|VD| = |VG-VTH| = 0.5V時,其ION值分別為86 μA/μm 與13 μA/μm。此外,我們也做了Inverter特性上的分析,當VDD = 0.7 V時,其電壓增益值為18 V/V。
最後,我們透過半導體模擬軟體TCAD進行此CFET結構的模擬,當金屬功函數為4.33 eV 時,其NFET與PFET具有最對稱的|VTH| = 0.25 V與ION值,且在Inverter的模擬中,其展現良好的電壓傳輸特性曲線,在VDD為0.5 V時,擁有最高的電壓增益值為297 V/V,且在SRAM的模擬中在VDD為0.5V時,其SNM為90 mV。根據這些模擬的結果,當我們在此結構中得到對稱的電性,可以有效地提升元件性能,並持續的退進摩爾定律。
In recent years, the development of technologies such as cloud computing and the Internet of Things (IoT) has become increasingly widespread and mature. Consequently, the advancements in technology and the semiconductor industry have accelerated. In the semiconductor industry, as Moore's Law continues to progress, there is a desire to place higher-density and low-power components on integrated circuits. However, traditional FinFET semiconductor structures have reached physical limitations and encountered challenges in manufacturing processes. To address the scaling issues of structures, many research teams have proposed various studies to sustain the development of Moore's Law. For example, using channel materials with higher carrier mobility, such as (SiGe, Ge, III-V compound semiconductors) to replace the conventional silicon channel material, or improving and enhancing component performance through two-dimensional and three-dimensional transistor structures.
In this study, we propose a self-aligned manufacturing technique to create a CFET structure, with a square Ge nanowire aligned to the (110) surface orientation serving as the PFET and a diamond-shaped Ge nanowire aligned to the (111) surface orientation serving as the NFET. Using CFET structures can effectively shrink the device area by half.. Additionally, we simplify the manufacturing process of this structure by employing a single metal gate. In the CFET structure, the PFET and NFET exhibit respective values of ION/IOFF as 1.72×105 and 1.57×106 when |VD| = 0.05 V. The minimum subthreshold swing (SSmin) values are 104 mV/dec and 110 mV/dec, respectively. When |VD| = |VG-VTH| = 0.5V, the ION values are 86 μA/μm and 13 μA/μm for PFET and NFET, respectively. Furthermore, an analysis of inverter characteristics demonstrates a voltage gain of 18 V/V when VDD = 0.7V.
Finally, we simulated CFET structures by TCAD software. When the metal work function is 4.33 eV, the NFET and PFET exhibit the most symmetrical |VTH| = 0.25V and ION values. In the inverter simulation, it shows excellent voltage transfer characteristics, with the highest voltage gain of 297 V/V at VDD = 0.5V. In the SRAM simulation, the static noise margin (SNM) is 90 mV at VDD = 0.5V. Based on these simulation results, when we achieve symmetrical electrical characteristics in this structure, it can effectively enhance the performance of components and sustain the progression of Moore's Law.
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 vii
圖表目錄 viii
第一章 1
簡介 1
1-1摩爾定律的微縮 (Moore's law) 1
1-2高電子、電洞遷移率之通道材料 4
1-3 High-K材料的應用 5
1-4垂直式堆疊互補式場效電晶體 7
1-5矽、鍺不同表面取向之載子遷移率比較 10
1-6通道與閘極氧化層的界面處理 12
1-7霍爾效應量測 14
1-8研究動機 15
1-9論文組織 18
第二章 20
MOSFET與CMOS之操作機制及重要參數 20
2-1金氧半場效電晶體(MOSFET) 20
2-2 CMOS Inverter 23
2-3 MOSFET之重要參數 25
2-3.1 次臨界斜率(Subthreshold swing, SS) 25
2-3.2 臨界電壓(Threshold voltage, VTH) 26
2-3.3 電壓增益(Voltage gain) 28
第三章 29
自我對準鍺奈米線之互補式場效電晶體 29
3-1自我對準鍺奈米線之互補式場效電晶體製程流程 29
3-2 CFET結構之材料分析 35
3-2-1霍爾量測(Hall-effet)分析 35
3-2-2 CFET結構之SEM、TEM及EDS分析 38
3-3 CFET結構中PFET與NFET及其Inverter電性分析 42
3-3-1 CFET結構中的PFET與NFET 42
3-3-2 CFET結構中的Inverter特性 48
第四章 50
TCAD模擬自我對準鍺奈米線之互補式場效電晶體 50
4-1 CFET結構的架設及物性分析 50
4-1.1 CFET結構的架設 50
4-1.2 CFET 結構的物性 52
4-2 TCAD模擬之CFET電性分析 55
4-2.1 CFET 的IDVG及IDVD特性曲線 55
4-2.2 CFET 的Inverter VTC曲線及電壓增益 57
4-2.3 CFET 的SRAM曲線 59
第五章 62
結論 62
參考文獻 65
[1-1] G. E. M Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38, pp. 114-117, 1965.
[1-2] Ann Kelleher, “Moore’s Law – Now and in the Future.” {HYPERLINK: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://download.intel.com/newsroom/2022/manufacturing/Intel-Moores-Law-Investor-Meeting-Paper-final.pdf}
[1-3] N. Loubet et al., “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” 2017 Symposium on VLSI Technology, pp. T230-T231, 2017, DOI: 10.23919/VLSIT.2017.7998183.
[1-4] 2022 International Roadmap for Devices and Systems, {HYPERLINK: https://irds.ieee.org/images/files/pdf/2022/2022IRDS_MM.pdf}.
[1-5] S. Takagi et al., “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 21-39, 2008, DOI: 10.1109/ted.2007.911034.
[1-6] 2020 International Roadmap for Devices and Systems, {HYPERLINK: https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf }.
[1-7] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, DOI: 10.1051/epjap:2004206.
[1-8] Ryckaert J. et al., “The Complementary FET (CFET) for CMOS scaling beyond N3,” 2018 IEEE Symposium on VLSI Technology, pp. 141-142, 2018, DOI: 10.1109/VLSIT.2018.8510618.
[1-9] W. Rachmady et al., “300mm Heterogeneous 3D Integration of Record Performance Layer Transfer Germanium PMOS with Silicon NMOS for Low Power High Performance Logic Applications,” 2019 IEEE International Electron Devices Meeting, pp. 29.7.1-29.7.4, 2019, DOI: 10.1109/IEDM19573.2019.8993626.
[1-10] C. -Y. Huang et al., “3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling,” 2020 IEEE International Electron Devices Meeting, pp. 20.6.1-20.6.4, 2020, DOI: 10.1109/IEDM13553.2020.9372066.
[1-11] M. Yang et al., "High performance CMOS fabricated on hybrid substrate with different crystal orientations,“ 2003, IEDM
[1-12] C. H. Lee et al., "Record-high electron mobility in Ge n-MOSFETs exceeding Si universality," 2009 IEDM.
[1-13] K. Morii et al., "High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping," 2009 IEDM.
[1-14] R. Zhang et al., "1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation," 2011 IEDM.
[1-15] J. Wang et al., "Challenges and Opportunities for Stacked Transistor: DTCO and Device," 2021 VLSI.
[1-16] OpenStax University Physics, “University Physics,” 2018, pp. 2011-2014, {HYPERLINK:https://cnx.org/exports/74fd2873-157d-4392-bf01 2fccab830f2c@14.69.pdf/university-physics-14.69.pdf}
[1-17] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929.

第二章
[2-1] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, 1930/07 1930.
[2-2] J. Bardeen and W. H. Brattain, "The Transistor, A Semi-Conductor Triode Phys" Rev. 74, 230 – Published 15 July 1948
[2-3] M. M. Atalla, “Semiconductor Triode,” U.S. Patent No. 3056888, 1962.
[2-4] D. Kahng, “Electrical Field Controlled Semiconductor Devices,” U.S. Patent No. 3102230, 1963.
[2-5] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, Fourth Edition, chapter 10, 2012.
[2-6] Gucmann, Filip. "GaAs-based MOS Structures." (2015).
[2-7] ECE 410, Prof. F. Salem/Prof. A. Mason notes update Lecture Notes 7.34 [Online].Available:https://www.egr.msu.edu/classes/ece410/salem/files/s16/lectures/Ch7_SN.pdf
[2-8] Available: https://www.electronics-tutorial.net/Digital-CMOS-Design/Non-Ideal-Effects/Subthreshold-Conduction/
[2-9] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09, Synopsys, Inc., Mountain View, CA, USA.
[2-10] Centurelli, Francesco, Riccardo Della Sala, and Giuseppe Scotti. "A standard-cell-based CMFB for fully synthesizable OTAs." Journal of Low Power Electronics and Applications 12.2 (2022): 27.
第四章
[4-1] Norah Stewart , “EE141 Chapter 5 The Inverter April 10, 2003 ”, [Online]. Available: https://slideplayer.com/slide/13566947/
[4-2] Malleshaiah, G. V. et al, "Study of SRAM Cell for Balancing Read and Write Margins in Sub-100nm Technology using Noise-Curve Method." International Journal of Engineering Research & Technology (IJERT) Vol. 4 Issue 06, June-2015.
第五章
[5-1] C. -T. Tu et al., "First Demonstration of Monolithic 3D Self-aligned GeSi Channel and Common Gate Complementary FETs by CVD Epitaxy Using Multiple P/N Junction Isolation," 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 20.3.1-20.3.4, doi: 10.1109/IEDM45625.2022.10019532.
[5-2] S.-W. Chang et al., “First Demonstration of CMOS Inverter and 6T-SRAM Based on GAA CFETs Structure for 3D-IC Applications,” 2019 IEEE International Electron Devices Meeting, pp. 11.7.1-11.7-4, 2019, DOI: 10.1109/IEDM19573.2019.8993525.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *