|
[1-1] G. E. M Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38, pp. 114-117, 1965. [1-2] Ann Kelleher, “Moore’s Law – Now and in the Future.” {HYPERLINK: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://download.intel.com/newsroom/2022/manufacturing/Intel-Moores-Law-Investor-Meeting-Paper-final.pdf} [1-3] N. Loubet et al., “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” 2017 Symposium on VLSI Technology, pp. T230-T231, 2017, DOI: 10.23919/VLSIT.2017.7998183. [1-4] 2022 International Roadmap for Devices and Systems, {HYPERLINK: https://irds.ieee.org/images/files/pdf/2022/2022IRDS_MM.pdf}. [1-5] S. Takagi et al., “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 21-39, 2008, DOI: 10.1109/ted.2007.911034. [1-6] 2020 International Roadmap for Devices and Systems, {HYPERLINK: https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf }. [1-7] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, DOI: 10.1051/epjap:2004206. [1-8] Ryckaert J. et al., “The Complementary FET (CFET) for CMOS scaling beyond N3,” 2018 IEEE Symposium on VLSI Technology, pp. 141-142, 2018, DOI: 10.1109/VLSIT.2018.8510618. [1-9] W. Rachmady et al., “300mm Heterogeneous 3D Integration of Record Performance Layer Transfer Germanium PMOS with Silicon NMOS for Low Power High Performance Logic Applications,” 2019 IEEE International Electron Devices Meeting, pp. 29.7.1-29.7.4, 2019, DOI: 10.1109/IEDM19573.2019.8993626. [1-10] C. -Y. Huang et al., “3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling,” 2020 IEEE International Electron Devices Meeting, pp. 20.6.1-20.6.4, 2020, DOI: 10.1109/IEDM13553.2020.9372066. [1-11] M. Yang et al., "High performance CMOS fabricated on hybrid substrate with different crystal orientations,“ 2003, IEDM [1-12] C. H. Lee et al., "Record-high electron mobility in Ge n-MOSFETs exceeding Si universality," 2009 IEDM. [1-13] K. Morii et al., "High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping," 2009 IEDM. [1-14] R. Zhang et al., "1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation," 2011 IEDM. [1-15] J. Wang et al., "Challenges and Opportunities for Stacked Transistor: DTCO and Device," 2021 VLSI. [1-16] OpenStax University Physics, “University Physics,” 2018, pp. 2011-2014, {HYPERLINK:https://cnx.org/exports/74fd2873-157d-4392-bf01 2fccab830f2c@14.69.pdf/university-physics-14.69.pdf} [1-17] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929. 第二章 [2-1] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, 1930/07 1930. [2-2] J. Bardeen and W. H. Brattain, "The Transistor, A Semi-Conductor Triode Phys" Rev. 74, 230 – Published 15 July 1948 [2-3] M. M. Atalla, “Semiconductor Triode,” U.S. Patent No. 3056888, 1962. [2-4] D. Kahng, “Electrical Field Controlled Semiconductor Devices,” U.S. Patent No. 3102230, 1963. [2-5] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, Fourth Edition, chapter 10, 2012. [2-6] Gucmann, Filip. "GaAs-based MOS Structures." (2015). [2-7] ECE 410, Prof. F. Salem/Prof. A. Mason notes update Lecture Notes 7.34 [Online].Available:https://www.egr.msu.edu/classes/ece410/salem/files/s16/lectures/Ch7_SN.pdf [2-8] Available: https://www.electronics-tutorial.net/Digital-CMOS-Design/Non-Ideal-Effects/Subthreshold-Conduction/ [2-9] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09, Synopsys, Inc., Mountain View, CA, USA. [2-10] Centurelli, Francesco, Riccardo Della Sala, and Giuseppe Scotti. "A standard-cell-based CMFB for fully synthesizable OTAs." Journal of Low Power Electronics and Applications 12.2 (2022): 27. 第四章 [4-1] Norah Stewart , “EE141 Chapter 5 The Inverter April 10, 2003 ”, [Online]. Available: https://slideplayer.com/slide/13566947/ [4-2] Malleshaiah, G. V. et al, "Study of SRAM Cell for Balancing Read and Write Margins in Sub-100nm Technology using Noise-Curve Method." International Journal of Engineering Research & Technology (IJERT) Vol. 4 Issue 06, June-2015. 第五章 [5-1] C. -T. Tu et al., "First Demonstration of Monolithic 3D Self-aligned GeSi Channel and Common Gate Complementary FETs by CVD Epitaxy Using Multiple P/N Junction Isolation," 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 20.3.1-20.3.4, doi: 10.1109/IEDM45625.2022.10019532. [5-2] S.-W. Chang et al., “First Demonstration of CMOS Inverter and 6T-SRAM Based on GAA CFETs Structure for 3D-IC Applications,” 2019 IEEE International Electron Devices Meeting, pp. 11.7.1-11.7-4, 2019, DOI: 10.1109/IEDM19573.2019.8993525.
|