帳號:guest(3.144.237.96)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾馨嬋
作者(外文):Zhong, Xin-Chan
論文名稱(中文):環繞式閘極多晶矽無接面式奈米片通道之超晶格氧化鉿鋯鐵電電晶體及CMOS反相器研究
論文名稱(外文):Study of Superlattice HfO2-ZrO2 Junctionless Poly-Si Ferroelectric Nanosheet Gate-all-around Field-effect-transistor and CMOS Inverter
指導教授(中文):吳永俊
林育賢
指導教授(外文):Wu, Yung-Chun
Lin, Yu-Hsien
口試委員(中文):朱鵬維
侯福居
口試委員(外文):Chu, Peng-Wei
Hou, Fu-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011541
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:74
中文關鍵詞:環繞式閘極多晶矽無接面式電晶體奈米片通道超晶格氧化鉿鋯鐵電電晶體CMOS反相器
外文關鍵詞:Superlattice HZOJunctionlessFETPoly-SiGAAFETFeFETCMOS Inverter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著現今科技日新月異,在半導體產業快術發展下,人類生活和半導體產品密不可分。當半導體尺寸隨著摩爾定律微縮下,將面臨著許多問題,包括物理上的極限以及半導體製程技術上的困難,要克服這些問題成為了目前最重要的議題。從古至今,提出了許多改善短通道效應的方法,例如:改變閘極結構及材料、氧化層採用高介電係數材料、改變通道摻雜結構,像是無接面式電晶體等等,因此有許多學者正朝著這些方向研究,並發表了豐碩的成果,期望能為現今的科技做出貢獻。
本篇論文分別使用了超晶格氧化鉿鋯材料和氧化鉿鋯材料作為MFM電容的鐵電層以及環繞式閘極多晶矽無接面式鐵電電晶體的閘極氧化層,並且進行材料分析以及觀察特性,接著以超晶格氧化鉿鋯材料進一步製作了p型電晶體,並將n型及p型電晶體利用電路連接的方式,進行CMOS反相器的量測及分析。
在材料分析及電容量測的部分,透過GIXRD分析,確認兩種材料均具有鐵電特性,並發現超晶格氧化鉿鋯材料擁有較大的Orthorhombic/Tetragonal混和晶相,相較之下,氧化鉿鋯材料的Monoclinic晶相比例較高,顯示超晶格氧化鉿鋯材料具有較優越的鐵電特性。在電容的特性量測中,得知超晶格氧化鉿鋯電容的介電係數及殘餘極化量分別比氧化鉿鋯電容提高了13%及11%,超晶格氧化鉿鋯電容展現優於氧化鉿鋯電容的特性。
在電晶體的研究中,比較了分別使用超晶格氧化鉿鋯材料和氧化鉿鋯材料作為環繞式閘極多晶矽無接面式鐵電電晶體的閘極氧化層,並證實了超晶格氧化鉿鋯材料在電晶體中的優越性能,特別是其較小的次臨界擺幅、更高的ION/IOFF以及更低的DIBL。此外,我們製作了以超晶格氧化鉿鋯材料做為氧化層的n型極p型電晶體,並成功進行CMOS反相器量測。顯示了環繞式閘極多晶矽無接面式超晶格氧化鉿鋯材料鐵電電晶體在低功耗和高性能應用中的潛力,而超晶格氧化鉿鋯材料的應用有望進一步推進鐵電材料的研究和應用,並在未來的半導體應用中發揮重要的作用。
With the rapid advancements in modern technology, the semiconductor industry has become deeply intertwined with human life. As semiconductor sizes continue to shrink following Moore's Law, various challenges such as physical limitations and difficulties in fabrication processes have arisen, becoming crucial issues to overcome. Throughout history, researchers have proposed methods to mitigate short-channel effects, including altering gate structures, using high-k dielectric materials for the oxide layer, and employing junctionless transistors, among others.
This thesis focuses on using superlattice hafnium zirconium oxide (SL HZO) and hafnium zirconium oxide (HZO) materials in Metal-Ferroelectric-Metal (MFM) capacitors and Ferroelectric Poly-Si Junctionless Nanosheet Gate-all-around Field-effect-transistor (JL Poly-Si Fe-GAAFETs), respectively. Material analyses confirmed the ferroelectric properties of both materials, with SL HZO showing superior characteristics. Capacitance measurements revealed higher dielectric constant and remanent polarization in SL HZO, resulting in superior MFM capacitor performance.
In the study of transistors, SL HZO as the gate oxide of Ferroelectric Poly-Si Junctionless Nanosheet Gate-all-around Field-effect-transistors demonstrated better performance, with smaller subthreshold swing, higher ION/IOFF ratio, lower drain-induced barrier lowering (DIBL), and higher carrier mobility. Successful fabrication of p-type transistors using SL HZO as the gate oxide and demonstration of CMOS inverters further emphasized the potential of SL HZO for low-power and high-performance applications, contributing to the advancement of ferroelectric materials research and their applications in future semiconductor devices.
In conclusion, this thesis explores the challenges posed by semiconductor scaling and presents the potential benefits of utilizing SL HZO materials in enhancing device performance. The findings contribute to the progress of current semiconductor technology and inspire further research in this field.
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖表目錄 x
第一章 1
簡介 1
1.1 電晶體的微縮(Scaling of Transistor) 1
1.2 二氧化鉿基的鐵電材料(HfO2-based Ferroelectric Material) 4
1.3 超晶格氧化鉿鋯材料(Superlattice HfO2-ZrO2 Material) 8
1.4 研究動機 13
1.5 論文架構 15
第二章 17
機制探討 17
2.1 MOSFET與CMOS反相器(Inverter)操作機制 17
2.1.1 MOSFET 17
2.1.2 CMOS反相器(Inverter) 20
2.2 MOSFET重要參數 22
2.2.1 臨界電壓(Threshold voltage, VTH) 22
2.2.2 次臨界擺幅(Subthreshold swing, SS) 22
2.2.3 汲極引致能障下降(Drain Induce Barrier Lowering, DIBL) 23
2.3 無接面式場效電晶體(Junctionless FET) 24
2.4 負電容場效電晶體(Negative Capacitance FET, NCFET) 28
2.4.1 負電容效應(Negative Capacitance Effect) 28
2.4.2 非線性正電容現象(Non-linear Positive Capacitance Effect) 31
第三章 33
MFM電容製程步驟與特性分析 33
3.1 MFM電容製程步驟與結構 33
3.2 MFM電容材料分析 36
3.2.1 低掠角X光繞射(Grazing Incidence X-Ray Diffraction, GIXRD)分析 36
3.2.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 37
3.3 MFM電容特性分析 39
3.3.1 電容-電壓(C-V)量測分析 39
3.3.2 極化向量(Polarization)萃取分析 42
第四章 48
環繞式閘極多晶矽無接面式超晶格氧化鉿鋯鐵電電晶體 48
4.1 製程步驟與結構 48
4.2 穿透式電子顯微鏡與能量散射X光能譜分析 (TEM, and EDS Analysis) 52
4.3 電特性分析 56
4.4 SL HZO JL Poly-Si Fe-GAAFET反相器(Inverter) 63
第五章 67
結論 67
參考文獻 69
第一章
[1-1] G. E. M Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38, pp. 114-117, 1965.
[1-2] International Roadmap for Devices and Systems (IRDS™) 2022 Edition: https://irds.ieee.org/editions/2022
[1-3] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, 2000, DOI: 10.1109/16.887014.
[1-4] Bin Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, Chenming Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10 nm gate length,” Digest. International Electron Devices Meeting, 2002, pp. 251-254, doi: 10.1109/IEDM.2002.1175825.
[1-5] N. Loubet1, T. Hook, P. Montanini1, C.-W. Yeung, S. Kanakasabapathy, M. Guillorn, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.-C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” 2017 Symposium on VLSI Technology, pp. T230-T231, 2017, DOI: 10.23919/VLSIT.2017.7998183.
[1-6] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, doi: 10.1051/epjap:2004206.
[1-7] M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017, doi: 10.1039/c7tc01200d.
[1-8] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012, doi: 10.1021/nl302049k.
[1-9] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick; “Stabilizing the ferroelectric phase in doped hafnium oxide,” Journal of Applied Physics, 118 (7): 072006, 2015, doi:10.1063/1.4927805
[1-10] S. S. Cheema, N. Shanker, L. C. Wang, C. H. Hsu, S. L. Hsu, Y. H. Liao, M. S. Jose, J. Gomez, W. Chakraborty, W. Li, J. H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. I. Suh, W. T. Koo, K. J. Nam, D. J. Jung, W. B. Song, C. H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu and S. Salahuddin, “Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors,” Nature, 604, 65–71, 2022, doi.org:10.1038/s41586-022-04425-6
[1-11] Y. Peng, W. Xiao, Y. Liu, C. Jin, X. Deng, Y. Zhang, F. Liu, Y. Zheng, Y. Cheng, B. Chen, X. Yu, Y. Hao and G. Han, “HfO2-ZrO2 Superlattice Ferroelectric Capacitor With Improved Endurance Performance and Higher Fatigue Recovery Capability,” IEEE Electron Device Letters, vol. 43, no. 2, pp. 216-219, Feb. 2022, doi: 10.1109/LED.2021.3135961.
[1-12] Y. K. Liang, W. L. Li, Y. J. Wang, L. C. Peng, C. C. Lu, H. Y. Huang, S. H. Yeong, Y. M. Lin, Y. H. Chu, E. Y. Chang and C. H. Lin, “ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability,” IEEE Electron Device Letters, vol. 43, no. 9, pp. 1451-1454, Sept. 2022, doi: 10.1109/LED.2022.3193383.
[1-13] A. Kashir, M. G. Farahani, S. Kamba, M. Yadav, and H. Hwang, “Hf1–xZrxO2/ZrO2 Nanolaminate Thin Films as a High-κ Dielectric,” ACS Applied Electronic Materials 2021 3 (12), 5632-5640 doi: 10.1021/acsaelm.1c01105
[1-14] K. Li, Y. Peng, W. Xiao, F. Liu, Y. Zhang, Z. Feng, H. Dong, Y. Liu, Y. Hao and G. Han, “A Comparative Study on the Polarization, Reliability, and Switching Dynamics of HfO2-ZrO2-HfO2 and ZrO2-HfO2-ZrO2 Superlattice Ferroelectric Films,” IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 1802-1807, April 2023, doi: 10.1109/TED.2023.3248538.

第二章
[2-1] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Physics Review Journals Archive, vol. 74, pp. 230-231, 1948.
[2-2] D. Kahng, “Electrical Field Controlled Semiconductor Devices,” U.S. Patent No. 3102230, 1963.
[2-3] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, 1930/07 1930.
[2-4] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, Fourth Edition, chapter 10, 2012.
[2-5] Donald A. Neamen, “Microelectronics: Circuit Analysis and Design,” Fourth Edition, chapter 16, 2010.
[2-6] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, Fourth Edition, chapter 11, 2012.
[2-7] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, J. P. Colinge, “Performance estimation of junctionless multigate transistors,” Solid-State Electronics, vol. 54, pp. 97-103, Feb 2010.
[2-8] J. P. Colinge, C. W. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, “Junctionless Transistors: Physics and Properties,” Semiconductor-On-Insulator Materials for Nanoelectronics Applications, A. Nazarov, J. P. Colinge, F. Balestra, J.-P. Raskin, F. Gamiz, and V. S. Lysenko, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 187-200, doi: 10.1007/978-3-642-15868-1_10
[2-9] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, “Nanowire transistors without junctions,” Nature Nanotechnology, vol. 5, p. 225, 02/21/online 2010.
[2-10] C.W. Lee, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yan, R. Yu, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, S. Gheorghe, R. Murphy, J. P. Colinge, “Short-channel junctionless nanowire transistors,” Solid State Devices and Materials, 2010, pp. 1044-1045.
[2-11] M. Kobayashi, “A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor,” Applied Physics Express, vol. 11, pp. 110101, 2018.
[2-12] Muhammad A. Alam, “A Tutorial Introduction to Negative Capacitor Field Effect Transistors,” 2015/10/03, https://nanohub.org/resources/23157/about.
[2-13] M. N. K. Alam, P. Roussel, M. Heyns, and J. V. Houdt, “Positive non-linear capacitance: the origin of the steep subthreshold-slope in ferroelectric FETs,” Scientific Reports, vol 9, no. 1, pp. 14957, Oct. 2019, doi: 10.1038/s41598-019-51237-2.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *