帳號:guest(18.118.205.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林芙漣
作者(外文):Lin, Fu-Lien
論文名稱(中文):高效能1000W磷酸燃料電池堆系統與雙極板之設計與優化
論文名稱(外文):Optimization and designation of high-performance 1000W phosphoric acid fuel cell stacking system and bipolar plates
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):林洸銓
陳智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011524
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:磷酸燃料電池雙極板對向流燃料電池放大
外文關鍵詞:Phosphoric acid fuel cellbipolar platecounter flowscale-up fuel cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:453
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磷酸燃料電池(Phosphoric Acid Fuel Fell, PAEC)為高溫型燃料電池,其操作溫度介於150 ℃~220 ℃之間,相較於其他燃料電池,擁有對一氧化碳較高的容忍度、較無水管理問題等優點,並且本實驗室甲醇重組器的溫度也介於此範圍,適合整合成甲醇重組式燃料電池堆系統,因此選用此電池來做研究。
本研究探討磷酸燃料電池堆系統與雙極板之設計與優化。雙極流道板為燃料電池燃料輸入的通道,不同的幾何圖形設計會影響氣體濃度的分布、速度差與壓降,進而影響電池的效能。從模擬結果可得知,當雙極流道板採用對向流的方式設計、以及流道盡量採用90度和45度的彎折來降低流阻時,此流道擁有較低的壓降和速度差,同時也能讓膜電極組上的燃料壓力、速度、渦度等分佈較均勻,使燃料傳遞至膜電極組時濃度能夠更均勻的分佈。同時在實驗結果中,幸運草型流道相較於其他蛇紋型流道在單電池以及長效測試上擁有相對較高的效能與穩定性,當流量為1000 sccm時,擁有最高效能12.5 W。另外在流道放大設計中,因應甲醇重組式燃料電池堆系統欲放入圓型保溫桶,本研究將流道板與燃料電池模組改為圓形燃料電池,包含直徑5.17 cm和直徑14 cm兩種流道板,以及完整的模組。從模擬結果顯示,壓降與速度差與幸運草型流道相近,因此往後會使用此兩種設計來進行實驗操作。
在系統整合方面,甲醇重組式燃料電池堆系統中包含蒸發器、重組器、燃燒器、磷酸燃料電池、幫浦、管線等元件,本研究會將這些元件所散發與吸收的熱做計算並讓這些熱能夠做有效的處理,同時也將設計管線與整體系統等等,期望能達到1000 W高效能、輕重量、積體化之目標。
Phosphoric Acid Fuel Fell (PAEC) is a high-temperature fuel cell whose operating temperature is between 150 ℃ and 220 ℃. Compared with other fuel cells, its advantages have a higher tolerance to carbon monoxide and more simple water management. In addition, the temperature of the methanol-reformer in our laboratory is also within this range, which is suitable for integration into a system; thus, this research chooses PAFC for the experiment.
This research discusses the design and optimization of phosphoric acid fuel cell stack systems and bipolar plates. The bipolar plate is the entrance of gas in the fuel cell. Different designs will affect the gas concentration distribution, speed difference, and pressure drop, and then affect the performance of the battery. From the simulation results, it can be known that when the flow channel is designed with counter-flow, and the flow channel is bent at 90 degrees and 45 degrees as much as possible to reduce the flow resistance, the flow channel has a lower pressure drop and velocity difference, which makes the pressure drop, velocity difference, and vorticity more uniform on membrane electrode assembly (MEA), and allows the concentration of fuel to distribute more uniform when the fuel is delivered to the MEA. Also, in the experimental results, the clover-type flow channel has relatively higher performance and stability in a single cell and long-term testing than other serpentine flow channels. When the flow rate is 1000 sccm, it has the highest performance of 12.5 W. In addition, in the flow channel enlargement design, in response to the methanol recombination fuel cell stack system being put into a circular insulated barrel, this study changed the flow channel plate and fuel cell module to a circular fuel cell, including 5.17 cm and 14 cm diameter, and completely fuel cell modules. The simulation results show that the pressure drop and velocity difference is similar to that of the clover-type flow channel. Therefore, these two modules will be tested through the experiment in the future.
In terms of system integration, the methanol-reformed fuel cell stack system includes the evaporator, reformer, burner, phosphoric acid fuel cell, pump, pipeline, and so on. This study will calculate the heat emitted and absorbed by these components and let the heat can be effectively processed. Also, pipelines and overall systems will be designed. It is expected to achieve the target of a kW-level high-efficient lightweight integrated methanol-reformed fuel cell system.
摘要 I
Abstract II
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 燃料電池簡介 1
1-3 燃料電池之種類及其原理 3
1-3-1 磷酸燃料電池(Phosphoric Acid Fuel Fell, PAFC) 3
1-3-2 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC) 4
1-3-3 直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC) 5
1-3-4 鹼性燃料電池(Alkaline Fuel Cell, AFC) 6
1-3-5 熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell, MCFC) 7
1-3-6 固體氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 7
1-4 研究動機 10
第二章 文獻回顧與儀器基本原理 11
2-1 燃料電池之電化學理論 11
2-1-1 電極之熱力學 11
2-1-2 電極之反應動力學 12
2-2 磷酸燃料電池基本構造 14
2-2-1 端板、集電板、氣密墊片與雙極板 14
2-2-2 氣體擴散層 15
2-2-3 觸媒層 16
2-2-4 質子交換膜 17
2-3 磷酸燃料電池放大與電池堆疊之研究 18
2-4 燃料電池系統整合之研究 20
2-5 儀器分析原理及操作 22
2-5-1 單電池測試(Single cell Test) 22
2-5-2 模擬軟體 ─ ANSYS Fluent 24
第三章 實驗方法 25
3-1 實驗藥品與設備 25
3-1-1 實驗藥品與材料 25
3-1-2 實驗設備 25
3-1-3 分析儀器 25
3-2 實驗流程 26
3-3 磷酸燃料電池製備與測試 27
3-3-1電極之製備 27
3-3-2 膜電極組之製備 28
3-3-3 單電池之製備 29
3-3-4 單電池測試 30
3-4 流道模擬測試 31
第四章 結果與討論 32
4-1 雙向流之雙極流道板 32
4-1-1 幸運草型雙極流道板之單電池測試與長效測試 34
4-1-2 幸運草型石墨雙極流道板與鈦六鋁四釩雙極流道板之比較 37
4-1-3 圓形模組之設計與模擬 38
4-2 燃料電池膜組放大之設計與模擬 48
4-3 甲醇重組式燃料電池堆系統之計算與設計 50
4-3-1 熱計算 51
4-3-2 整體系統內部元件與支架之設計 53
4-3-3 管線設計 55
4-3-4 整體系統設計 56
第五章 結論 58
第六章 未來展望 59
參考文獻 60
[1] W. R. G. Esq., "XXIV. On voltaic series and the combination of gases by platinum," Philosophical Magazine Series 1, vol. 14, pp. 127-130.
[2] J. Larminie, and Andrew Dicks, Fuel Cell Systems Explained. UK: Wiley, 2018.
[3] N. Sammes, R. Bove, and K. Stahl, "Phosphoric acid fuel cells: Fundamentals and applications," (in English), Curr. Opin. Solid State Mat. Sci., Review vol. 8, no. 5, pp. 372-378, Oct 2004, doi: 10.1016/j.cossms.2005.01.001.
[4] S. R. S. D.E. Eapen, R. Rengaswamy, "Phosphoric acid fuel cells," Compendium of Hydrogen Energy, vol. 3, pp. 57-70, 2016.
[5] T. Wilberforce et al., "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," (in English), Renew. Sust. Energ. Rev., Article vol. 111, pp. 236-260, Sep 2019, doi: 10.1016/j.rser.2019.04.081.
[6] A. Hermann, T. Chaudhuri, and P. Spagnol, "Bipolar plates for PEM fuel cells: A review," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 30, no. 12, pp. 1297-1302, Sep 2005, doi: 10.1016/j.ijhydene.2005.04.016.
[7] H. Wang and J. A. Turner, "Reviewing Metallic PEMFC Bipolar Plates," (in English), Fuel Cells, Review vol. 10, no. 4, pp. 510-519, Aug 2010, doi: 10.1002/fuce.200900187.
[8] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, "New materials for polymer electrolyte membrane fuel cell current collectors," (in English), J. Power Sources, Article; Proceedings Paper vol. 80, no. 1-2, pp. 235-241, Jul-Aug 1999, doi: 10.1016/s0378-7753(98)00264-x.
[9] N. F. Asri, T. Husaini, A. Sulong, E. H. Majlan, and W. R. W. Daud, "Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 42, no. 14, pp. 9135-9148, Apr 2017, doi: 10.1016/j.ijhydene.2016.06.241.
[10] J. Wind, R. Spah, W. Kaiser, and G. Bohm, "Metallic bipolar plates for PEM fuel cells," (in English), J. Power Sources, Article; Proceedings Paper vol. 105, no. 2, pp. 256-260, Mar 2002, Art no. Pii s0378-7753(01)00950-8, doi: 10.1016/s0378-7753(01)00950-8.
[11] M. C. Li, S. Z. Luo, C. L. Zeng, J. N. Shen, H. C. Lin, and C. N. Cao, "Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments," (in English), Corrosion Sci., Article vol. 46, no. 6, pp. 1369-1380, Jun 2004, doi: 10.1016/s0010-938x(03)00187-2.
[12] Y. J. Ren and C. L. Zeng, "Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process," (in English), J. Power Sources, Article vol. 171, no. 2, pp. 778-782, Sep 2007, doi: 10.1016/j.jpowsour.2007.06.075.
[13] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," (in English), Fuel Cells, Article vol. 1, no. 1, pp. 5-39, May 2001, doi: 10.1002/1615-6854(200105)1:1<5::Aid-fuce5>3.0.Co;2-g.
[14] K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology," Chemical Reviews, vol. 104, no. 10, pp. 4637-4678, 2004/10/01 2004, doi: 10.1021/cr020715f.
[15] A. Chandan et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review," (in English), J. Power Sources, Review vol. 231, pp. 264-278, Jun 2013, doi: 10.1016/j.jpowsour.2012.11.126.
[16] J. Y. Wang, "Barriers of scaling-up fuel cells: Cost, durability and reliability," (in English), Energy, Article vol. 80, pp. 509-521, Feb 2015, doi: 10.1016/j.energy.2014.12.007.
[17] J. Y. Wang, "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," (in English), Appl. Energy, Review vol. 157, pp. 640-663, Nov 2015, doi: 10.1016/j.apenergy.2015.01.032.
[18] M. Sauermoser, N. Kizilova, B. G. Pollet, and S. Kjelstrup, "Flow Field Patterns for Proton Exchange Membrane Fuel Cells," (in English), Front. Energy Res., Review vol. 8, p. 20, Feb 2020, Art no. 13, doi: 10.3389/fenrg.2020.00013.
[19] M. Marappan et al., "Scaling up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules," (in English), Molecules, Article vol. 26, no. 2, p. 16, Jan 2021, Art no. 286, doi: 10.3390/molecules26020286.
[20] S. A. Saco, R. T. K. Raj, and P. Karthikeyan, "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," (in English), Energy, Article vol. 113, pp. 558-573, Oct 2016, doi: 10.1016/j.energy.2016.07.079.
[21] F. Barreras, A. Lozano, V. Roda, J. Barroso, and J. Martin, "Optimal design and operational tests of a high-temperature PEM fuel cell for a combined heat and power unit," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 39, no. 10, pp. 5388-5398, Mar 2014, doi: 10.1016/j.ijhydene.2013.11.070.
[22] J. Andre, E. Claude, D. Sirac, D. Gastaldin, and E. Rossinot, "PEMFC Flow-field Design, Channel/land Width Ratio Optimization," (in English), Fuel Cells, Article vol. 20, no. 3, pp. 231-235, Jun 2020, doi: 10.1002/fuce.201900049.
[23] G. M. Hassan, J. Lee, C. M. Faizan, H. Ju, and Ieee, "Numerical Study on the Cathode Channel Width Ratio for Improving Performance of Air Cooled PEMFC," in 10th International Renewable Energy Congress (IREC), Sousse, TUNISIA, Mar 26-28 2019, NEW YORK: Ieee, in International Renewable Energy Congress, 2019. [Online]. Available: ://WOS:000482703000047. [Online]. Available: ://WOS:000482703000047
[24] A. Mohammedi, Y. Sahli, and H. Ben Moussa, "3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels," (in English), Fuel, Article vol. 263, p. 28, Mar 2020, Art no. 116713, doi: 10.1016/j.fuel.2019.116713.
[25] M. Z. Chowdhury, O. Genc, and S. Toros, "Numerical optimization of channel to land width ratio for PEM fuel cell," (in English), Int. J. Hydrog. Energy, Article vol. 43, no. 23, pp. 10798-10809, Jun 2018, doi: 10.1016/j.ijhydene.2017.12.149.
[26] R. R. Kumar, S. Suresh, T. Suthakar, and V. K. Singh, "Experimental investigation on PEM fuel cell using serpentine with tapered flow channels," (in English), Int. J. Hydrog. Energy, Article vol. 45, no. 31, pp. 15642-15649, Jun 2020, doi: 10.1016/j.ijhydene.2020.04.023.
[27] P. Karthikeyan, P. Velmurugan, A. J. George, R. R. Kumar, and R. J. Vasanth, "Experimental investigation on scaling and stacking up of proton exchange membrane fuel cells," (in English), Int. J. Hydrog. Energy, Article vol. 39, no. 21, pp. 11186-11195, Jul 2014, doi: 10.1016/j.ijhydene.2014.05.086.
[28] F. Barreras, A. Lozano, L. Valino, R. Mustafa, and C. Marin, "Fluid dynamics performance of different bipolar plates - Part I. Velocity and pressure fields," (in English), J. Power Sources, Article vol. 175, no. 2, pp. 841-850, Jan 2008, doi: 10.1016/j.jpowsour.2007.09.107.
[29] J. Shen, Z. K. Tu, and S. H. Chan, "Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell," (in English), Energy Conv. Manag., Article vol. 213, p. 7, Jun 2020, Art no. 112841, doi: 10.1016/j.enconman.2020.112841.
[30] A. S. Selvaraj and T. K. R. Rajagopal, "Effect of flow fields and humidification of reactant and oxidant on the performance of scaled-up PEM-FC using CFD code," (in English), Int. J. Energy Res., Article vol. 43, no. 13, pp. 7254-7274, Oct 2019, doi: 10.1002/er.4750.
[31] V. Lakshminarayanan and P. Karthikeyan, "Performance enhancement of interdigitated flow channel of PEMFC by scaling up study," (in English), Energy Sources Part A-Recovery Util. Environ. Eff., Article vol. 42, no. 14, pp. 1785-1796, Jul 2020, doi: 10.1080/15567036.2019.1604889.
[32] M. Ghouse, H. Abaoud, and A. Al-Boeiz, "Operational experience of a 1 kW PAFC stack," (in English), Appl. Energy, Article; Proceedings Paper vol. 65, no. 1-4, pp. 303-314, Jan-Apr 2000, doi: 10.1016/s0306-2619(99)00112-9.
[33] J. C. Yang, Y. S. Park, S. H. Seo, H. J. Lee, and J. S. Noh, "Development of a 50 kW PAFC power generation system," (in English), J. Power Sources, Article; Proceedings Paper vol. 106, no. 1-2, pp. 68-75, Apr 2002, Art no. Pii s0378-7753(01)01052-7, doi: 10.1016/s0378-7753(01)01052-7.
[34] M. Pareta, S. R. Choudhury, B. Somaiah, J. Rangarajan, N. Matre, and J. Palande, "Methanol reformer integrated phosphoric acid fuel cell (PAFC) based compact plant for field deployment," (in English), Int. J. Hydrog. Energy, Article vol. 36, no. 22, pp. 14771-14778, Nov 2011, doi: 10.1016/j.ijhydene.2011.03.044.
[35] C. Park, Y. Jung, K. Lim, B. Kim, Y. Kang, and H. Ju, "Analysis of a phosphoric acid fuel cell-based multi-energy hub system for heat, power, and hydrogen generation," (in English), Appl. Therm. Eng., Article vol. 189, p. 18, May 2021, Art no. 116715, doi: 10.1016/j.applthermaleng.2021.116715.
[36] Q. Meyer et al., "Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography," (in English), Electrochim. Acta, Article vol. 242, pp. 125-136, Jul 2017, doi: 10.1016/j.electacta.2017.05.028.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *