|
[1] W. R. G. Esq., "XXIV. On voltaic series and the combination of gases by platinum," Philosophical Magazine Series 1, vol. 14, pp. 127-130. [2] J. Larminie, and Andrew Dicks, Fuel Cell Systems Explained. UK: Wiley, 2018. [3] N. Sammes, R. Bove, and K. Stahl, "Phosphoric acid fuel cells: Fundamentals and applications," (in English), Curr. Opin. Solid State Mat. Sci., Review vol. 8, no. 5, pp. 372-378, Oct 2004, doi: 10.1016/j.cossms.2005.01.001. [4] S. R. S. D.E. Eapen, R. Rengaswamy, "Phosphoric acid fuel cells," Compendium of Hydrogen Energy, vol. 3, pp. 57-70, 2016. [5] T. Wilberforce et al., "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," (in English), Renew. Sust. Energ. Rev., Article vol. 111, pp. 236-260, Sep 2019, doi: 10.1016/j.rser.2019.04.081. [6] A. Hermann, T. Chaudhuri, and P. Spagnol, "Bipolar plates for PEM fuel cells: A review," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 30, no. 12, pp. 1297-1302, Sep 2005, doi: 10.1016/j.ijhydene.2005.04.016. [7] H. Wang and J. A. Turner, "Reviewing Metallic PEMFC Bipolar Plates," (in English), Fuel Cells, Review vol. 10, no. 4, pp. 510-519, Aug 2010, doi: 10.1002/fuce.200900187. [8] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, "New materials for polymer electrolyte membrane fuel cell current collectors," (in English), J. Power Sources, Article; Proceedings Paper vol. 80, no. 1-2, pp. 235-241, Jul-Aug 1999, doi: 10.1016/s0378-7753(98)00264-x. [9] N. F. Asri, T. Husaini, A. Sulong, E. H. Majlan, and W. R. W. Daud, "Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 42, no. 14, pp. 9135-9148, Apr 2017, doi: 10.1016/j.ijhydene.2016.06.241. [10] J. Wind, R. Spah, W. Kaiser, and G. Bohm, "Metallic bipolar plates for PEM fuel cells," (in English), J. Power Sources, Article; Proceedings Paper vol. 105, no. 2, pp. 256-260, Mar 2002, Art no. Pii s0378-7753(01)00950-8, doi: 10.1016/s0378-7753(01)00950-8. [11] M. C. Li, S. Z. Luo, C. L. Zeng, J. N. Shen, H. C. Lin, and C. N. Cao, "Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments," (in English), Corrosion Sci., Article vol. 46, no. 6, pp. 1369-1380, Jun 2004, doi: 10.1016/s0010-938x(03)00187-2. [12] Y. J. Ren and C. L. Zeng, "Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process," (in English), J. Power Sources, Article vol. 171, no. 2, pp. 778-782, Sep 2007, doi: 10.1016/j.jpowsour.2007.06.075. [13] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," (in English), Fuel Cells, Article vol. 1, no. 1, pp. 5-39, May 2001, doi: 10.1002/1615-6854(200105)1:1<5::Aid-fuce5>3.0.Co;2-g. [14] K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology," Chemical Reviews, vol. 104, no. 10, pp. 4637-4678, 2004/10/01 2004, doi: 10.1021/cr020715f. [15] A. Chandan et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review," (in English), J. Power Sources, Review vol. 231, pp. 264-278, Jun 2013, doi: 10.1016/j.jpowsour.2012.11.126. [16] J. Y. Wang, "Barriers of scaling-up fuel cells: Cost, durability and reliability," (in English), Energy, Article vol. 80, pp. 509-521, Feb 2015, doi: 10.1016/j.energy.2014.12.007. [17] J. Y. Wang, "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," (in English), Appl. Energy, Review vol. 157, pp. 640-663, Nov 2015, doi: 10.1016/j.apenergy.2015.01.032. [18] M. Sauermoser, N. Kizilova, B. G. Pollet, and S. Kjelstrup, "Flow Field Patterns for Proton Exchange Membrane Fuel Cells," (in English), Front. Energy Res., Review vol. 8, p. 20, Feb 2020, Art no. 13, doi: 10.3389/fenrg.2020.00013. [19] M. Marappan et al., "Scaling up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules," (in English), Molecules, Article vol. 26, no. 2, p. 16, Jan 2021, Art no. 286, doi: 10.3390/molecules26020286. [20] S. A. Saco, R. T. K. Raj, and P. Karthikeyan, "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," (in English), Energy, Article vol. 113, pp. 558-573, Oct 2016, doi: 10.1016/j.energy.2016.07.079. [21] F. Barreras, A. Lozano, V. Roda, J. Barroso, and J. Martin, "Optimal design and operational tests of a high-temperature PEM fuel cell for a combined heat and power unit," (in English), Int. J. Hydrog. Energy, Article; Proceedings Paper vol. 39, no. 10, pp. 5388-5398, Mar 2014, doi: 10.1016/j.ijhydene.2013.11.070. [22] J. Andre, E. Claude, D. Sirac, D. Gastaldin, and E. Rossinot, "PEMFC Flow-field Design, Channel/land Width Ratio Optimization," (in English), Fuel Cells, Article vol. 20, no. 3, pp. 231-235, Jun 2020, doi: 10.1002/fuce.201900049. [23] G. M. Hassan, J. Lee, C. M. Faizan, H. Ju, and Ieee, "Numerical Study on the Cathode Channel Width Ratio for Improving Performance of Air Cooled PEMFC," in 10th International Renewable Energy Congress (IREC), Sousse, TUNISIA, Mar 26-28 2019, NEW YORK: Ieee, in International Renewable Energy Congress, 2019. [Online]. Available: ://WOS:000482703000047. [Online]. Available: ://WOS:000482703000047 [24] A. Mohammedi, Y. Sahli, and H. Ben Moussa, "3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels," (in English), Fuel, Article vol. 263, p. 28, Mar 2020, Art no. 116713, doi: 10.1016/j.fuel.2019.116713. [25] M. Z. Chowdhury, O. Genc, and S. Toros, "Numerical optimization of channel to land width ratio for PEM fuel cell," (in English), Int. J. Hydrog. Energy, Article vol. 43, no. 23, pp. 10798-10809, Jun 2018, doi: 10.1016/j.ijhydene.2017.12.149. [26] R. R. Kumar, S. Suresh, T. Suthakar, and V. K. Singh, "Experimental investigation on PEM fuel cell using serpentine with tapered flow channels," (in English), Int. J. Hydrog. Energy, Article vol. 45, no. 31, pp. 15642-15649, Jun 2020, doi: 10.1016/j.ijhydene.2020.04.023. [27] P. Karthikeyan, P. Velmurugan, A. J. George, R. R. Kumar, and R. J. Vasanth, "Experimental investigation on scaling and stacking up of proton exchange membrane fuel cells," (in English), Int. J. Hydrog. Energy, Article vol. 39, no. 21, pp. 11186-11195, Jul 2014, doi: 10.1016/j.ijhydene.2014.05.086. [28] F. Barreras, A. Lozano, L. Valino, R. Mustafa, and C. Marin, "Fluid dynamics performance of different bipolar plates - Part I. Velocity and pressure fields," (in English), J. Power Sources, Article vol. 175, no. 2, pp. 841-850, Jan 2008, doi: 10.1016/j.jpowsour.2007.09.107. [29] J. Shen, Z. K. Tu, and S. H. Chan, "Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell," (in English), Energy Conv. Manag., Article vol. 213, p. 7, Jun 2020, Art no. 112841, doi: 10.1016/j.enconman.2020.112841. [30] A. S. Selvaraj and T. K. R. Rajagopal, "Effect of flow fields and humidification of reactant and oxidant on the performance of scaled-up PEM-FC using CFD code," (in English), Int. J. Energy Res., Article vol. 43, no. 13, pp. 7254-7274, Oct 2019, doi: 10.1002/er.4750. [31] V. Lakshminarayanan and P. Karthikeyan, "Performance enhancement of interdigitated flow channel of PEMFC by scaling up study," (in English), Energy Sources Part A-Recovery Util. Environ. Eff., Article vol. 42, no. 14, pp. 1785-1796, Jul 2020, doi: 10.1080/15567036.2019.1604889. [32] M. Ghouse, H. Abaoud, and A. Al-Boeiz, "Operational experience of a 1 kW PAFC stack," (in English), Appl. Energy, Article; Proceedings Paper vol. 65, no. 1-4, pp. 303-314, Jan-Apr 2000, doi: 10.1016/s0306-2619(99)00112-9. [33] J. C. Yang, Y. S. Park, S. H. Seo, H. J. Lee, and J. S. Noh, "Development of a 50 kW PAFC power generation system," (in English), J. Power Sources, Article; Proceedings Paper vol. 106, no. 1-2, pp. 68-75, Apr 2002, Art no. Pii s0378-7753(01)01052-7, doi: 10.1016/s0378-7753(01)01052-7. [34] M. Pareta, S. R. Choudhury, B. Somaiah, J. Rangarajan, N. Matre, and J. Palande, "Methanol reformer integrated phosphoric acid fuel cell (PAFC) based compact plant for field deployment," (in English), Int. J. Hydrog. Energy, Article vol. 36, no. 22, pp. 14771-14778, Nov 2011, doi: 10.1016/j.ijhydene.2011.03.044. [35] C. Park, Y. Jung, K. Lim, B. Kim, Y. Kang, and H. Ju, "Analysis of a phosphoric acid fuel cell-based multi-energy hub system for heat, power, and hydrogen generation," (in English), Appl. Therm. Eng., Article vol. 189, p. 18, May 2021, Art no. 116715, doi: 10.1016/j.applthermaleng.2021.116715. [36] Q. Meyer et al., "Investigation of Hot Pressed Polymer Electrolyte Fuel Cell Assemblies via X-ray Computed Tomography," (in English), Electrochim. Acta, Article vol. 242, pp. 125-136, Jul 2017, doi: 10.1016/j.electacta.2017.05.028. |