|
[1] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537. [2] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nature communications, 6 (2015) 6362. [3] J. Steiger, D. Kramer, R. Mönig, Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium, Journal of Power Sources, 261 (2014) 112-119. [4] I. Yoshimatsu, T. Hirai, J.i. Yamaki, Lithium electrode morphology during cycling in lithium cells, Journal of the Electrochemical Society, 135 (1988) 2422. [5] J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries:magnesium and beyond, Chemical reviews, 114 (2014) 11683-11720. [6] M. Matsui, Study on electrochemically deposited Mg metal, Journal of Power Sources, 196 (2011) 7048-7055. [7] Y. He, Q. Li, L. Yang, C. Yang, D. Xu, Electrochemical‐Conditioning‐Free and Water‐Resistant Hybrid AlCl3/MgCl2/Mg(TFSI)2 Electrolytes for Rechargeable Magnesium Batteries, Angewandte Chemie, 131 (2019) 7697-7701. [8] L. Yang, C. Yang, Y. Chen, Z. Pu, Z. Zhang, Y. Jie, X. Zheng, Y. Xiao, S. Jiao, Q. Li, Hybrid MgCl2/AlCl3/Mg(TFSI)2 electrolytes in DME enabling high-rate rechargeable Mg batteries, ACS Applied Materials & Interfaces, 13 (2021) 30712-30721. [9] T.a. Pavčnik, M. Lozinšek, K. Pirnat, A. Vizintin, T. Mandai, D. Aurbach, R. Dominko, J. Bitenc, On the practical applications of the magnesium fluorinated alkoxyaluminate electrolyte in Mg battery cells, ACS applied materials & interfaces, 14 (2022) 26766-26774. [10] H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks, Applied Energy, 110 (2013) 252-266. [11] D.R. Lide, Abundance of elements in the Earth’s crust and in the sea, CRC handbook of chemistry and physics, Internet Version, (2005) 14-17. [12] Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.-C. Hsu, S. Chu, Y. Cui, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano letters, 15 (2015) 2910-2916. [13] H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Structure and compatibility of a magnesium electrolyte with a sulphur cathode, Nature communications, 2 (2011) 427. [14] Z. Zhao‐Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm, M. Fichtner, Performance improvement of magnesium sulfur batteries with modified non‐nucleophilic electrolytes, Advanced Energy Materials, 5 (2015) 1401155. [15] R. Mohtadi, F. Mizuno, Magnesium batteries: Current state of the art, issues and future perspectives, Beilstein journal of nanotechnology, 5 (2014) 1291-1311. [16] Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions, Journal of Electroanalytical Chemistry, 466 (1999) 203-217. [17] C. Liebenow, Reversibility of electrochemical magnesium deposition from Grignard solutions, Journal of applied electrochemistry, 27 (1997) 221-225. [18] T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous electrochemistry of magnesium: applications to energy storage, Journal of the Electrochemical Society, 137 (1990) 775. [19] S.-Y. Ha, Y.-W. Lee, S.W. Woo, B. Koo, J.-S. Kim, J. Cho, K.T. Lee, N.-S. Choi, Magnesium (II) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries, ACS applied materials & interfaces, 6 (2014) 4063-4073. [20] X.-C. Hu, Z.-Z. Shen, J. Wan, Y.-X. Song, B. Liu, H.-J. Yan, R. Wen, L.-J. Wan, Insight into interfacial processes and degradation mechanism in magnesium metal batteries, Nano Energy, 78 (2020) 105338. [21] R. Jay, A.W. Tomich, J. Zhang, Y. Zhao, A. De Gorostiza, V. Lavallo, J. Guo, Comparative study of Mg(CB11H12)2 and Mg(TFSI)2 at the magnesium/electrolyte interface, ACS Applied Materials & Interfaces, 11 (2019) 11414-11420. [22] Z. Ma, M. Kar, C. Xiao, M. Forsyth, D.R. MacFarlane, Electrochemical cycling of Mg in Mg [TFSI]2/tetraglyme electrolytes, Electrochemistry Communications, 78 (2017) 29-32. [23] Z. Zhao-Karger, X. Zhao, O. Fuhr, M. Fichtner, Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries, Rsc Advances, 3 (2013) 16330-16335. [24] R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chemical communications, 50 (2014) 243-245. [25] C.J. Barile, E.C. Barile, K.R. Zavadil, R.G. Nuzzo, A.A. Gewirth, Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition, The Journal of Physical Chemistry C, 118 (2014) 27623-27630. [26] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries, Journal of the Electrochemical Society, 155 (2007) A103. [27] Y. Gofer, N. Pour, D. Aurbach, Electrolytic solutions for rechargeable magnesium batteries, Lithium Batteries: Advanced Technologies and Applications, (2013) 327-347. [28] N. Pour, Y. Gofer, D.T. Major, D. Aurbach, Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations, Journal of the American Chemical Society, 133 (2011) 6270-6278. [29] X. Liu, A. Du, Z. Guo, C. Wang, X. Zhou, J. Zhao, F. Sun, S. Dong, G. Cui, Uneven Stripping Behavior, an Unheeded Killer of Mg Anodes, Advanced Materials, 34 (2022) 2201886. [30] R.N. Samajdar, S.A. Brown, S.K. Kairy, S.D. Robertson, A.J. Wain, Methodologies for Operando ATR-IR Spectroscopy of Magnesium Battery Electrolytes, Analytical Chemistry, 94 (2022) 14985-14993. [31] S.A. Brown, S.A. Cussen, R. Kennard, S. Marchesini, J.J. Pryke, A. Rae, S.D. Robertson, R.N. Samajdar, A.J. Wain, Atom-efficient synthesis of a benchmark electrolyte for magnesium battery applications, Chemical Communications, 58 (2022) 12070-12073. [32] R.N. Samajdar, S. Marchesini, S.A. Brown, S.D. Robertson, K.R. Paton, A.J. Pollard, A.J. Wain, Differentiating between Ion Transport and Plating–Stripping Phenomena in Magnesium Battery Electrolytes Using Operando Raman Spectroscopy, ACS Energy Letters, 8 (2023) 1864-1869. [33] H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries:an on-going challenge, Energy & Environmental Science, 6 (2013) 2265-2279. [34] D. Aurbach, Y. Cohen, M. Moshkovich, The study of reversible magnesium deposition by in situ scanning tunneling microscopy, Electrochemical and Solid-State Letters, 4 (2001) A113. [35] A.J. Crowe, J.L. DiMeglio, K.K. Stringham, B.M. Bartlett, Kinetics of magnesium deposition and stripping from non-aqueous electrolytes, The Journal of Physical Chemistry C, 121 (2017) 20613-20620. [36] M.N. Bachhav, N.T. Hahn, K.R. Zavadil, E.G. Nelson, A.J. Crowe, B.M. Bartlett, P.-W. Chu, V.J. Araullo-Peters, E.A. Marquis, Microstructure and chemistry of electrodeposited Mg films, Journal of The Electrochemical Society, 163 (2016) D645. [37] J.H. Kwak, Y. Jeoun, S.H. Oh, S. Yu, J.-H. Lim, Y.-E. Sung, S.-H. Yu, H.-D. Lim, Operando visualization of morphological evolution in Mg metal anode: insight into dendrite suppression for stable Mg metal batteries, ACS Energy Letters, 7 (2021) 162-170. [38] C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology, Electrochimica Acta, 76 (2012) 270-274. [39] W. Gu, J.T. Lee, N. Nitta, G. Yushin, Electrodeposition of Nanostructured Magnesium Coatings, Nanomaterials and Nanotechnology, 4 (2014) 30. [40] H. Meerwein, D. Delfs, H. Morschel, Die polymerisation des tetrahydrofurans, Angewandte Chemie, 72 (1960) 927-934. [41] M. Khelladi, L. Mentar, A. Azizi, A. Sahari, A. Kahoul, Electrochemical nucleation and growth of copper deposition onto FTO and n-Si (100) electrodes, Materials Chemistry and Physics, 115 (2009) 385-390. [42] D. Grujicic, B. Pesic, Electrodeposition of copper:the nucleation mechanisms, Electrochimica acta, 47 (2002) 2901-2912. [43] B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochimica acta, 28 (1983) 879-889. [44] D. Lv, T. Xu, P. Saha, M.K. Datta, M.L. Gordin, A. Manivannan, P.N. Kumta, D. Wang, A scientific study of current collectors for Mg batteries in Mg (AlCl2EtBu)2/THF electrolyte, Journal of The Electrochemical Society, 160 (2012) A351. [45] A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano letters, 17 (2017) 1132-1139.
|