|
1. Zhang, Y., et al., Understanding and Modifying the Scaling Relations for Ammonia Synthesis on Dilute Metal Alloys: From Single-Atom Alloys to Dimer Alloys. ACS Catalysis, 2022. 12(15): p. 9201-9212. 2. Liu, H., Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese journal of catalysis, 2014. 35(10): p. 1619-1640. 3. Erisman, J.W., et al., How a century of ammonia synthesis changed the world. Nature Geoscience, 2008. 1(10): p. 636-639. 4. Smith, C., A.K. Hill, and L. Torrente-Murciano, Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020. 13(2): p. 331-344. 5. Medford, A.J., et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42. 6. Saadatjou, N., A. Jafari, and S. Sahebdelfar, Ruthenium nanocatalysts for ammonia synthesis: a review. Chemical Engineering Communications, 2015. 202(4): p. 420-448. 7. Zhou, Y., et al., A highly stable and active mesoporous ruthenium catalyst for ammonia synthesis prepared by a RuCl3/SiO2-templated approach. Chinese Journal of Catalysis, 2019. 40(1): p. 114-123. 8. Li, L., et al., Operando spectroscopic and isotopic-label-directed observation of LaN-promoted Ru/ZrH2 catalyst for ammonia synthesis via associative and chemical looping route. Journal of catalysis, 2020. 389: p. 218-228. 9. Wu, Y., et al., Enhanced ammonia synthesis performance of ceria-supported Ru catalysts via introduction of titanium. Chemical Communications, 2020. 56(7): p. 1141-1144. 10. Li, L., et al., Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem, 2022. 8(3): p. 749-768. 11. Tang, Y., et al., Metal‐Dependent Support Effects of Oxyhydride‐Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. Advanced Energy Materials, 2018. 8(36): p. 1801772. 12. Kitano, M., et al., Low-temperature synthesis of perovskite oxynitride-hydrides as ammonia synthesis catalysts. Journal of the American Chemical Society, 2019. 141(51): p. 20344-20353. 13. Fang, H., et al., Challenges and Opportunities of Ru-Based Catalysts toward the Synthesis and Utilization of Ammonia. ACS Catalysis, 2022. 12(7): p. 3938-3954. 14. Hannagan, R.T., et al., Single-atom alloy catalysis. Chemical Reviews, 2020. 120(21): p. 12044-12088. 15. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558-561. 16. Nomoev, A.V., et al., Structure and mechanism of the formation of core-shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J Nanotechnol, 2015. 6: p. 874-80. 17. Yang, X.-F., et al., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 2013. 46(8): p. 1740-1748. 18. Lin, J., et al., Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. Journal of the American Chemical Society, 2013. 135(41): p. 15314-15317. 19. Qiao, B., et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011. 3(8): p. 634-641. 20. Zhang, Y., et al., Insight into the critical role of strong interaction between Ru and Co in RuCo single-atom alloy structure for significant enhancement of ammonia synthesis performance. Journal of Catalysis, 2022. 410: p. 256-265. 21. Darby, M.T., et al., Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. The Journal of Physical Chemistry Letters, 2018. 9(18): p. 5636-5646. 22. Thirumalai, H. and J.R. Kitchin, Investigating the reactivity of single atom alloys using density functional theory. Topics in Catalysis, 2018. 61(5): p. 462-474. 23. Greiner, M.T., et al., Free-atom-like d states in single-atom alloy catalysts. Nature chemistry, 2018. 10(10): p. 1008-1015. 24. Yan, H., et al., Single-atom catalysts and their applications in organic chemistry. Journal of Materials Chemistry A, 2018. 6(19): p. 8793-8814. 25. Cheng, N., et al., Single-atom catalysts: from design to application. Electrochemical Energy Reviews, 2019. 2(4): p. 539-573. 26. Mao, J., et al., Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020. 34: p. 100917. 27. Zhao, G.-C., Y.-Q. Qiu, and C.-G. Liu, A systematic theoretical study of hydrogen activation, spillover and desorption in single-atom alloys. Applied Catalysis A: General, 2021. 610: p. 117948. 28. Shen, T., et al., Recent Advances of Single-Atom-Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022. 12(39): p. 2201823. 29. Zhang, T., et al., Ru alloying with La or Y for ammonia synthesis via integrated dissociative and associative mechanism with superior operational stability. Chemical Engineering Science, 2022. 252: p. 117255. 30. Kyriakou, G., et al., Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012. 335(6073): p. 1209-1212. 31. Liu, J., et al., Tackling CO poisoning with single-atom alloy catalysts. Journal of the American Chemical Society, 2016. 138(20): p. 6396-6399. 32. Darby, M.T., et al., Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018. 8(6): p. 5038-5050. 33. Giannakakis, G., M. Flytzani-Stephanopoulos, and E.C.H. Sykes, Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Accounts of chemical research, 2018. 52(1): p. 237-247. 34. Boudart, M., Kinetics and Mechanism of Ammonia Synthesis. Catalysis Reviews, 1981. 23(1-2): p. 1-15. 35. Li, L., et al., Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem, 2022. 8(3): p. 749-768. 36. Nørskov, J.K., Theory nof chemisorption and heterogeneous catalysis. Physica B+C, 1984. 127(1): p. 193-202. 37. Gutterød, E.S., An experimental and computational study of nitrogen activation on promoted ruthenium catalysts. 2016. 38. Dai, T., et al., “Sabatier principle” of d electron number for describing the nitrogen reduction reaction performance of single-atom alloy catalysts. Journal of Materials Chemistry A, 2022. 10(32): p. 16900-16907. 39. Nilsson, A., et al., The electronic structure effect in heterogeneous catalysis. Catalysis Letters, 2005. 100(3): p. 111-114. 40. Jónsson, H., G. Mills, and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and quantum dynamics in condensed phase simulations. 1998, World Scientific. p. 385-404. 41. Henkelman, G., B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 2000. 113(22): p. 9901-9904. 42. Reyes, Y.I.A., et al., Mechanistic understanding of N 2 activation: a comparison of unsupported and supported Ru catalysts. Faraday Discussions, 2023. 43. Eric., Density Functional Theory Understanding of Nitrogen Activation Mechanisms by Ru Catalysts. Thesis, 2022. 44. Dahl, S., et al., Role of steps in N 2 activation on Ru (0001). Physical Review Letters, 1999. 83(9): p. 1814. 45. Mortensen, J.J., et al., Density functional calculations of N2Adsorption and dissociation on a Ru (0001) surface. Journal of Catalysis, 1997. 169(1): p. 85-92. 46. Dronskowski, R. and P.E. Blöchl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 1993. 97(33): p. 8617-8624.
|