|
[1] Y. Shao, G. Yin, Y. Gao, and P. Shi, Durability Study of Pt∕C and Pt∕CNTs Catalysts under Simulated PEM Fuel Cell Conditions, Journal of the Electrochemical Society, vol. 153, no. 6, 2006. [2] 國家發展委員會。「臺灣2050淨零排放路徑及策略總說明」。 [3] S. Shiva Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis – A review, Materials Science for Energy Technologies, vol. 2, no. 3, pp. 442-454, 2019. [4] T. Wang, X. Cao, and L. Jiao, PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects, Carbon Neutrality, vol. 1, no. 1, 2022. [5] N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-Exchange Membrane Water Electrolyzers, Chem Rev, vol. 122, no. 13, pp. 11830-11895, 2022. [6] H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environmental Science & Technology, vol. 39, no. 11, pp. 4317-4320, 2005. [7] H. Liu, H. B. Tao, and B. Liu, Kinetic Insights of Proton Exchange Membrane Water Electrolyzer Obtained by Operando Characterization Methods, J Phys Chem Lett, vol. 13, no. 28, pp. 6520-6531, 2022. [8] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy, vol. 38, no. 12, pp. 4901-4934, 2013. [9] S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateev, Optimization of porous current collectors for PEM water electrolysers, International Journal of Hydrogen Energy, vol. 34, no. 11, pp. 4968-4973, 2009. [10] W. Xu and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, International Journal of Hydrogen Energy, vol. 35, no. 21, pp. 12029-12037, 2010. [11] Y.-F. Lin, C.-Y. Yen, C.-C. M. Ma, S.-H. Liao, C.-H. Lee, Y.-H. Hsiao, and H.-P. Lin, High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes, Journal of Power Sources, vol. 171, no. 2, pp. 388-395, 2007. [12] H. Teuku, I. Alshami, J. Goh, M. S. Masdar, and K. S. Loh, Review on bipolar plates for low‐temperature polymer electrolyte membrane water electrolyzer, International Journal of Energy Research, vol. 45, no. 15, pp. 20583-20600, 2021. [13] A. Awasthi, K. Scott, and S. Basu, Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14779-14786, 2011. [14] F. Marangio, M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1143-1158, 2009. [15] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, and H. M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem Soc Rev, vol. 46, no. 2, pp. 337-365, 2017. [16] I. C. Man, H. Y. Su, F. Calle‐Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, and J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem, vol. 3, no. 7, pp. 1159-1165, 2011. [17] S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochimica Acta, vol. 29, no. 11, pp. 1503-1512, 1984. [18] T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials, ACS Catalysis, vol. 2, no. 8, pp. 1765-1772, 2012. [19] A. R. Zeradjanin, J.-P. Grote, G. Polymeros, and K. J. J. Mayrhofer, A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship, Electroanalysis, vol. 28, no. 10, pp. 2256-2269, 2016. [20] M. Tominaga, Y. Yatsugi, and N. Watanabe, Oxidative corrosion potential vs. pH diagram for single-walled carbon nanotubes, RSC Advances, vol. 4, no. 52, 2014. [21] T. Fujigaya, Y. Shi, J. Yang, H. Li, K. Ito, and N. Nakashima, A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers, Journal of Materials Chemistry A, vol. 5, no. 21, pp. 10584-10590, 2017. [22] H. Kim, J. Kim, J. Kim, G. H. Han, W. Guo, S. Hong, H. S. Park, H. W. Jang, S. Y. Kim, and S. H. Ahn, Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer, Applied Catalysis B: Environmental, vol. 283, p 119596, 2021. [23] 張亘佑。「利用恆電位沉積法製備高活性鉑觸媒應用於 磷酸燃料電池電極之製程優化」。碩士論文, 國立清華大學工程與系統科學系, 2021。 [24] H. Jang and J. Lee, Iridium oxide fabrication and application: A review, Journal of Energy Chemistry, vol. 46, pp. 152-172, 2020. [25] M. S. Chandrasekar and M. Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications, Electrochimica Acta, vol. 53, no. 8, pp. 3313-3322, 2008. [26] E. Vidal, J. Buxadera-Palomero, C. Pierre, J. M. Manero, M.-P. Ginebra, S. Cazalbou, C. Combes, E. Rupérez, and D. Rodríguez, Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery, Surface and Coatings Technology, vol. 358, pp. 266-275, 2019. [27] H. Kim, N. P. Subramanian, and B. N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition, Journal of Power Sources, vol. 138, no. 1-2, pp. 14-24, 2004. [28] S. M. Ayyadurai, Y.-S. Choi, P. Ganesan, S. P. Kumaraguru, and B. N. Popov, Novel PEMFC Cathodes Prepared by Pulse Deposition, Journal of the Electrochemical Society, vol. 154, no. 10, 2007. [29] 吳維陞。「電沈積高活性鉑觸媒於奈米碳管載體應用於質子交換膜燃料電池電極之製程優化」。碩士, 國立清華大學工程與系統科學系, 2020。 [30] 莊宸綱。「利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」。碩士論文, 國立清華大學工程與系統科學系, 2016。 [31] W. R. H. Peter T. Kissinger, cyclic voltammetry, Chemical Education, vol. 60, 1983. [32] F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de Miguel, O. A. Scelza, and H. R. Corti, Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods, International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8193-8203, 2009. [33] K. D. Vernon-Parry, Scanning Electron Microscopy: an introduction, Centre for Electronic Materials, vol. 13, no. 4, pp. 40-44, 2000. [34] V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, and J. Allan, The electronic structure of iridium and its oxides, Surface and Interface Analysis, vol. 48, no. 5, pp. 261-273, 2016. [35] D. DeBonis, M. Mayer, A. Omosebi, and R. S. Besser, Analysis of mechanism of Nafion ® conductivity change due to hot pressing treatment, Renewable Energy, vol. 89, pp. 200-206, 2016. [36] 黃仁暉。「利用恆電位沉積法製備花狀鉑鎳合金觸媒應用於質子交換膜燃料電池之陰極探討」。碩士論文, 國立清華大學工程與系統科學系, 2020。 [37] E. Kuhnert, V. Hacker, M. Bodner, and P. Subramanian, A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells, International Journal of Energy Research, vol. 2023, pp. 1-23, 2023. [38] C. V. Pham, D. Escalera‐López, K. Mayrhofer, S. Cherevko, and S. Thiele, Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering, Advanced Energy Materials, vol. 11, no. 44, 2021. [39] 江政鉉。「利用電化學沉積法直接於微孔層上製備商用尺寸質子交換膜燃料電池之奈米鉑觸媒」。碩士論文, 國立清華大學工程與系統科學系, 2019。 [40] E. N. El Sawy and V. I. Birss, Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition, Journal of Materials Chemistry, vol. 19, no. 43, 2009. [41] S. Le Vot, L. Roué, and D. Bélanger, Electrodeposition of iridium onto glassy carbon and platinum electrodes, Electrochimica Acta, vol. 59, pp. 49-56, 2012. [42] T. S. Mayadevi, B.-H. Goo, S. Y. Paek, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, Nafion Composite Membranes Impregnated with Polydopamine and Poly(Sulfonated Dopamine) for High-Performance Proton Exchange Membranes, ACS Omega, vol. 7, no. 15, pp. 12956-12970, 2022. [43] A. Therdthianwong, P. Manomayidthikarn, and S. Therdthianwong, Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell, Energy, vol. 32, no. 12, pp. 2401-2411, 2007. [44] Y. Zhang, M. Cao, H. Lv, J. Wei, Y. Gu, D. Liu, W. Zhang, M. P. Ryan, and X. Wu, Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm−2 for sludge dewatering electrolysers, Electrochimica Acta, vol. 265, pp. 507-513, 2018. [45] M. Bernt, A. Siebel, and H. A. Gasteiger, Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings, Journal of the Electrochemical Society, vol. 165, no. 5, pp. F305-F314, 2018. [46] S. Zhao, A. Stocks, B. Rasimick, K. More, and H. Xu, Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers, Journal of the Electrochemical Society, vol. 165, no. 2, p F82, 2018. [47] S. Siracusano, V. Baglio, N. Van Dijk, L. Merlo, and A. S. Aricò, Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer, Applied energy, vol. 192, pp. 477-489, 2017.
|