帳號:guest(18.227.190.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭偉倫
作者(外文):Hsiao, Wei-Lun
論文名稱(中文):以電鍍法於ZX21鎂合金表面製備可陰離子置換之鋅鋁層狀雙氫氧化物膜層
論文名稱(外文):Fabrication of Anion-Exchangeable Electrodeposited Zn-Al Layered Double Hydroxides (LDHs) Coating on ZX21 Mg Alloy
指導教授(中文):朱鵬維
指導教授(外文):Chu, Peng-Wei
口試委員(中文):林招松
汪俊延
口試委員(外文):Lin, Chao-Sung
Uan, Jun-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011506
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:84
中文關鍵詞:電鍍層狀雙氫氧化物鎂合金陰離子置換腐蝕抑制釩酸根
外文關鍵詞:ElectrodepositionLayered double hydroxides (LDHs)Mg alloyAnion exchangeCorrosion inhibitionVanadate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鎂合金因具有低密度與相對較高的比強度,是廣泛用於電子產品、交通運輸和生醫器材等的輕量化金屬材料。然而,由於其較高的電化學活性和較差的抗腐蝕能力,需要透過表面改質來改善鎂合金的使用壽命。常應用在鎂合金表面的膜層可作為物理障礙層(physical barrier)來保護鎂合金底材不受腐蝕攻擊。然而,一旦膜層遭到刮傷或損害時,即可能失去其保護作用。因此,本研究探討一種具有主動性的鋅鋁層狀雙氫氧化物(Zn-Al layered double hydroxides, Zn-Al LDHs)膜層,以提供鎂合金底材更好的保護。由於LDHs的層狀類水鎂石結構,使得其弱鍵結的中介層陰離子能夠與環境中的其他陰離子進行置換。而此獨特的陰離子置換(anion-exchange)能力,使得Zn-Al LDHs膜層不僅可以作為物理障礙層,還可以吸收環境中具有攻擊性的陰離子,如氯離子,並釋放具有腐蝕抑制效果的陰離子到環境中,從而為鎂合金提供雙重保護(dual protection)的作用。
本研究採用電鍍法製備Zn-Al LDHs膜層於ZX21鎂合金表面,並且結合電化學性質量測(開路電位(OCP)量測、電化學阻抗頻譜(EIS)分析、動電位極化掃描等)與微結構分析(臨場光學顯微鏡(in situ OM)、X光繞射(XRD)、傅立葉轉換紅外光譜(FT-IR)、場發掃描式電子顯微鏡(FE-SEM)、能量散布X光光譜(EDS)、雙束掃描式電子顯微鏡/聚焦離子束系統(SEM/FIB)等),探討Zn-Al LDHs膜層的電鍍機制、最佳電鍍參數及後續陰離子置換後處理對於膜層微結構及ZX21鎂合金抗蝕性提升的影響。
研究結果顯示,以電鍍法在ZX21鎂合金表面製備的Zn-Al LDHs膜層,主要透過硝酸根的還原反應產生氫氧根離子,而此些氫氧根離子會與電鍍液中的金屬陽離子結合形成金屬氫氧化物,進而使Zn-Al LDHs膜層在ZX21鎂合金表面沉積。當施加固定還原電流密度為-2.2 mA/cm2時,所製備的Zn-Al LDHs膜層具有最緻密且均勻的表面形貌與最佳的抗腐蝕能力,因此固定還原電流密度為-2.2 mA/cm2為最佳的電鍍參數。
而在不同的陰離子置換後處理後,所有Zn-Al LDHs膜層的中介層中皆為複合陰離子的形式,其中的硝酸根能與環境中的氯離子進行置換,延緩腐蝕因子與ZX21鎂合金底材接觸發生腐蝕反應。此外,釩酸陰離子置換後處理後,中介層中的釩酸根能夠進行額外的還原反應來抑制水的還原,也能被釋放到膜層破損處進行自我修復,進而大幅降低ZX21鎂合金的腐蝕速率。總結來說,以電鍍法搭配釩酸陰離子置換後處理製備的Zn-Al LDHs膜層具有最佳的抗腐蝕能力。
Mg alloys are widely used lightweight metallic materials owing to their low density and high specific strength. They can be applied in various fields, including consumer electronics, transportation, and biomedical devices. However, due to their high electrochemical activity and poor corrosion resistance, surface modifications to Mg alloys, such as coating, are needed to improve their service life. Commonly employed coatings on Mg alloys serve as physical barriers to protect the underlying alloys from corrosion attack. However, these coatings may lose their protectiveness when subjected to scratching or damage. Hence, this study investigates an active Zn-Al layered double hydroxides (Zn-Al LDHs) coating to better protect the Mg alloys. Owing to its brucite-like layered structure, the weakly-bonded interlayer anions in the LDHs coating can be exchanged with other anions in the environment. With the unique anion-exchange capability, Zn-Al LDHs coating provides dual protection to the Mg alloys by not only acting as a physical barrier but also absorbing aggressive anions, such as chloride ions, and releasing corrosion-inhibiting anions to the environment.
In this study, Zn-Al LDHs coatings were fabricated on a ZX21 Mg alloy by electrodeposition. A combination of electrochemical measurements (open-circuit potential (OCP) monitoring, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization scans, etc.) and microstructure characterizations (in situ optical microscopy (OM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and dual beam scanning electron microscope/focused ion beam system (SEM/FIB) system, etc.) was conducted to investigate the electrodeposition mechanism, optimal electrodeposition parameters, and the effects of anion-exchange post-treatments on the microstructure of the Zn-Al LDHs coating and the enhancement of corrosion resistance of the ZX21 Mg alloy.
The experimental results show that the electrodeposition of Zn-Al LDHs coating on ZX21 Mg alloy primarily proceeds through the reduction reaction of nitrate ions, producing hydroxide ions. These hydroxide ions combine with the metal cations in the solution and form metal hydroxides, which facilitate the deposition of Zn-Al LDHs coating on the ZX21 Mg alloy. When a constant reduction current density of -2.2 mA/cm2 is applied, the resulting Zn-Al LDHs coating exhibits the densest and most uniform surface morphology and the best corrosion resistance among all conditions. Therefore, electrodeposition at a constant current density of
-2.2 mA/cm2 is the optimal electrodeposition condition in this study.
After different anion-exchange post-treatments, all prepared Zn-Al LDHs coatings contain complex anions in the interlayer. Among the anions, nitrate ions can be exchanged with chloride ions in the environment, delaying the contact between the chloride ions and the ZX21 Mg alloy substrate and the corrosion reaction. In addition, after vanadate anion-exchange post-treatment, vanadate ions in the interlayer can undergo additional reduction reaction, inhibiting the water reduction reaction. Furthermore, the vanadate ions can be released to the damaged area of the coating and self-heal the coating. These behaviors significantly mitigate the corrosion rate of the ZX21 Mg alloy. In summary, Zn-Al LDHs coating fabricated by electrodeposition and post-treated with vanadate anion-exchange exhibits the best corrosion resistance.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2.1 層狀雙氫氧化物(LDHs)簡介 2
2.2 層狀雙氫氧化物膜層製備方法 3
2.3 以電鍍法製備Zn-Al-NO3- LDHs膜層的電化學性質及微結構 6
2.4 陰離子置換 9
第三章 實驗方法與步驟 14
3.1 實驗流程 14
3.2 實驗材料製備及溶液配製 14
3.2.1 鎂合金底材準備 14
3.2.2 電鍍液和陰離子置換溶液 15
3.3 鋅鋁層狀雙氫氧化物膜層電鍍及陰離子置換 16
3.3.1 電鍍機制研究 16
3.3.2 電鍍製程 16
3.3.3 陰離子置換 17
3.4 電化學腐蝕性質量測 18
3.4.1 開路電位(OCP)量測 19
3.4.2 電化學阻抗頻譜(EIS)分析 19
3.4.3 動電位極化掃描 21
3.4.4 長時間浸泡 22
3.4.5 模擬刮痕實驗 22
3.5 微結構分析 23
3.5.1 膜層表面形貌及成分分析 23
3.5.2 X光繞射(XRD)分析 23
3.5.3 傅立葉轉換紅外光譜(FT-IR)分析 24
第四章 實驗結果 25
4.1 電鍍機制 25
4.1.1 陰極極化曲線 25
4.1.2 電鍍過程與臨場光學顯微鏡觀察 26
4.2 電鍍參數對於Zn-Al-NO3- LDHs膜層微結構及電化學腐蝕性質的影響 27
4.2.1 不同固定還原電位下的電鍍製程 27
4.2.2 不同固定還原電流密度下的電鍍製程 28
4.2.3 不同電鍍參數的Zn-Al-NO3- LDHs膜層表面形貌 30
4.2.4 不同電鍍參數Zn-Al-NO3- LDHs膜層的電化學腐蝕性質 32
4.2.5 以-2.2 mA/cm2之固定還原電流密度電鍍Zn-Al-NO3- LDHs膜層的微結構 36
4.3 陰離子置換對於Zn-Al-NO3- LDHs膜層之微結構及電化學腐蝕性質的影響 38
4.3.1 陰離子置換後處理及膜層微結構變化 38
4.3.2 陰離子置換膜層的電化學腐蝕性質 44
4.3.3 電鍍Zn-Al-NO3- LDHs膜層與陰離子置換後的長時間浸泡實驗 49
4.3.4 釩酸根置換後的Zn-Al-VO3- LDHs及電鍍Zn-Al-NO3- LDHs膜層的模擬刮痕實驗 55
第五章 討論 62
5.1 電鍍機制 62
5.2 電鍍參數選擇 64
5.3 陰離子置換後處理 66
5.4 Zn-Al LDHs中介層中釩酸根腐蝕抑制效果 69
第六章 結論 71
第七章 未來展望 72
參考文獻 74
附錄 79
[1] T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, Overview of advancement and development trend on magnesium alloy, Journal of Magnesium and Alloys, 7 (2019) 536-544.
[2] G.L. Song, A. Atrens, Understanding magnesium corrosion - A framework for improved alloy performance, Advanced Engineering Materials, 5 (2003) 837-858.
[3] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, Journal of Alloys and Compounds, 336 (2002) 88-113.
[4] Z.P. Xu, Y.C. Wu, Z.M. Zhang, Y.Y. Wang, J. Hu, Y.W. Ma, Z.H. Zhang, H.L. Huang, J.X. Wei, Q.J. Yu, C.J. Shi, A review on the research progress of LDHs as corrosion inhibitors for reinforced concrete, Journal of Building Engineering, 70 (2023).
[5] K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Research, 42 (2008) 1343-1368.
[6] D.G. Evans, R.C.T. Slade, Structural aspects of layered double hydroxides, in: X. Duan, D.G. Evans (Eds.) Layered Double Hydroxides, 2006, pp. 1-87.
[7] X.F. Zhang, M. Zhang, R.H. Li, X.Y. Feng, X. Pang, J.S. Rao, D.L. Cong, C.Q. Yin, Y.X. Zhang, Active Corrosion Protection of Mg-Al Layered Double Hydroxide for Magnesium Alloys: A Short Review, Coatings, 11 (2021).
[8] J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, Study of the in situ growth mechanism of Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy, Corrosion Science, 63 (2012) 148-158.
[9] J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, Study of the corrosion mechanism of the in situ grown Mg-Al-CO32- hydrotalcite film on AZ31 alloy, Corrosion Science, 65 (2012) 268-277.
[10] J.K. Lin, J.Y. Uan, Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3-/CO32- and corresponding protection against corrosion by the coating, Corrosion Science, 51 (2009) 1181-1188.
[11] J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, In situ growth of Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy, Corrosion Science, 53 (2011) 3281-3288.
[12] Q.D. Lei Liu , Paul White , Shuai Dong , Ivan S. Cole , Jie Dong , Xiao-Bo Chen, Hydrothermally prepared layered double hydroxide coatings for corrosion protection of Mg alloys –a critical review, Corrosion Communications, (2022).
[13] Y.H. Cao, D.J. Zheng, F. Zhang, J.S. Pan, C.J. Lin, Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review, Journal of Materials Science & Technology, 102 (2022) 232-263.
[14] L.D. Wang, K.Y. Zhang, W. Sun, T.T. Wu, H.R. He, G.C. Liu, Hydrothermal synthesis of corrosion resistant hydrotalcite conversion coating on AZ91D alloy, Materials Letters, 106 (2013) 111-114.
[15] M. Zhou, L.C. Yan, H. Ling, Y.P. Diao, X.L. Pang, Y.L. Wang, K.W. Gao, Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys, Applied Surface Science, 404 (2017) 246-253.
[16] J.H. Syu, J.Y. Uan, M.C. Lin, Z.Y. Lin, Optically transparent Li-Al-CO3 layered double hydroxide thin films on an AZ31 Mg alloy formed by electrochemical deposition and their corrosion resistance in a dilute chloride environment, Corrosion Science, 68 (2013) 238-248.
[17] L. Guo, W. Wu, Y.F. Zhou, F. Zhang, R.C. Zeng, J.M. Zeng, Layered double hydroxide coatings on magnesium alloys: A review, Journal of Materials Science & Technology, 34 (2018) 1455-1466.
[18] M.S. Yarger, E.M.P. Steinmiller, K.S. Choi, Electrochemical synthesis of Zn-Al layered double hydroxide (LDH) films, Inorganic Chemistry, 47 (2008) 5859-5865.
[19] F.X. Wu, J. Liang, Z.J. Peng, B.X. Liu, Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy, Applied Surface Science, 313 (2014) 834-840.
[20] S. Miyata, Anion-exchange properties of hydrotalcite-like compounds, Clays and clay minerals, 31 (1983) 305-311.
[21] X.J. Zhao, Y.Q. Zhu, S.M. Xu, H.M. Liu, P. Yin, Y.L. Feng, H. Yan, Anion exchange behavior of (MAl)-Al-II layered double hydroxides: a molecular dynamics and DFT study, Physical Chemistry Chemical Physics, 22 (2020) 19758-19768.
[22] Y. Tang, F. Wu, L. Fang, T. Guan, J. Hu, S.F. Zhang, A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys, Surface & Coatings Technology, 358 (2019) 594-603.
[23] Q.Q. He, M.J. Zhou, J.M. Hu, Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys, Electrochimica Acta, 355 (2020).
[24] X.X. Guo, S.L. Xu, L.L. Zhao, W. Lu, F.Z. Zhang, D.G. Evans, X. Duan, One-Step Hydrothermal Crystallization of a Layered Double Hydroxide/Alumina Bilayer Film on Aluminum and Its Corrosion Resistance Properties, Langmuir, 25 (2009) 9894-9897.
[25] J. Tedim, A.C. Bastos, S. Kallip, M.L. Zheludkevich, M.G.S. Ferreira, Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results, Electrochimica Acta, 210 (2016) 215-224.
[26] J. Tedim, M.L. Zheludkevich, A.N. Salak, A. Lisenkov, M.G.S. Ferreira, Nanostructured LDH-container layer with active protection functionality, Journal of Materials Chemistry, 21 (2011) 15464-15470.
[27] Y. Zhang, P.H. Yu, J.P. Wang, Y.D. Li, F. Chen, K. Wei, Y. Zuo, LDHs/graphene film on aluminum alloys for active protection, Applied Surface Science, 433 (2018) 927-933.
[28] L. Hao, T.T. Yan, Y.M. Zhang, X.H. Zhao, X.D. Lei, S.L. Xu, F.Z. Zhang, Fabrication and anticorrosion properties of composite films of silica/layered double hydroxide, Surface & Coatings Technology, 326 (2017) 200-206.
[29] 符仙瑚, 以電鍍法於生物可分解鎂合金表面製備鈣磷化物鍍層, 工程與系統科學系, 國立清華大學, 2022.
[30] K.D. Ralston, S. Chrisanti, T.L. Young, R.G. Buchheit, Corrosion inhibition of aluminum alloy 2024-T3 by aqueous vanadium species, Journal of the Electrochemical Society, 155 (2008) C350-C359.
[31] S.F. Feliu, Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges, Metals, 10 (2020).
[32] C.F. Li, W.H. Ho, S.K. Yen, Effects of Applied Voltage on Morphology and Crystal Orientation of Mg(OH)(2) Coating on Pt by Electrochemical Synthesis, Journal of the Electrochemical Society, 156 (2009) E29-E34.
[33] M. Iannuzzi, Mechanisms of Corrosion Inhibition of AA2024-T3 by Vanadates, Material Science and Engineering, The Ohio State University, 2006.
[34] R.C. Rohit, A.D. Jagadale, S.K. Shinde, D.Y. Kim, A review on electrodeposited layered double hydroxides for energy and environmental applications, Materials Today Communications, 27 (2021).
[35] M.H. Iuzviuk, A.C. Bouali, M. Serdechnova, K.A. Yasakau, D.C.F. Wieland, G. Dovzhenko, A. Mikhailau, C. Blawert, I.A. Zobkalo, M.G.S. Ferreira, M.L. Zheludkevich, In situ kinetics studies of Zn-Al LDH intercalation with corrosion related species, Physical Chemistry Chemical Physics, 22 (2020) 17574-17586.
[36] A.S. Roy, S.K. Pillai, S.S. Ray, A Comparison of Nitrate Release from Zn/Al-, Mg/Al-, and Mg-Zn/Al Layered Double Hydroxides and Composite Beads: Utilization as Slow-Release Fertilizers, Acs Omega, (2023).
[37] Y.H. Cao, D.J. Zheng, S.G. Dong, F. Zhang, J.Y. Lin, C. Wang, C.J. Lin, A Composite Corrosion Inhibitor of MgAl Layered Double Hydroxides Co-Intercalated with Hydroxide and Organic Anions for Carbon Steel in Simulated Carbonated Concrete Pore Solutions, Journal of the Electrochemical Society, 166 (2019) C3106-C3113.
[38] E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, S. Farashi, Fabrication and Characterization of PO43- Intercalated Zn-Al- Layered Double Hydroxide Nanocontainer, Journal of the Electrochemical Society, 163 (2016) C495-C505.
[39] M.J. Mitchell, O.E. Jensen, K.A. Cliffe, M.M. Maroto-Valer, A model of carbon dioxide dissolution and mineral carbonation kinetics, Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 466 (2010) 1265-1290.
[40] A. El Khanchaoui, M. Sajieddine, M. Ounacer, A. Fnidiki, F. Richomme, J. Juraszek, M. Mansori, M. Dib, A. Essoumhi, Structural, morphological, and magnetic studies of spinel ferrites derived from layered double hydroxides, Applied Physics a-Materials Science & Processing, 128 (2022).
[41] W. Jang, S. Yoon, J. Song, J. Kim, K. An, S. Cho, Selective phase transformation of layered double hydroxides into mixed metal oxides for catalytic CO oxidation, Cell Reports Physical Science, 2 (2021).
[42] R.P. Wijitwongwan, S.G. Intasa-ard, M. Ogawa, Preparation of Layered Double Hydroxides toward Precisely Designed Hierarchical Organization, ChemEngineering 3(2019).
[43] H.D.B. Jenkins, K.P. Thakur, REAPPRAISAL OF THERMOCHEMICAL RADII FOR COMPLEX-IONS, Journal of Chemical Education, 56 (1979) 576-577.
[44] A.N. Salak, J. Tedim, A.I. Kuznetsova, J.L. Ribeiro, L.G. Vieira, M.L. Zheludkevich, M.G.S. Ferreira, Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al layered double hydroxides: Vanadate vs nitrate, Chemical Physics, 397 (2012) 102-108.
[45] M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corrosion Science, 52 (2010) 602-611.
[46] Z. Feng, Corrosion inhibition study of AZ31 Mg alloy by Vanadate, Selenite and Phosphate, Materials Science and Engineering, The Ohio State University, 2019.
[47] B. Kuznetsov, M. Serdechnova, J. Tedim, M. Starykevich, S. Kallip, M.P. Oliveira, T. Hack, S. Nixon, M.G.S. Ferreira, M.L. Zheludkevich, Sealing of tartaric sulfuric (TSA) anodized AA2024 with nanostructured LDH layers, Rsc Advances, 6 (2016) 13942-13952.
[48] V. Kasneryk, M. Serdechnova, C. Blawert, M.L. Zheludkevich, LDH has been grown: What is next? Overview on methods of post-treatment of LDH conversion coatings, Applied Clay Science, 232 (2023).
[49] M.J. Anjum, J.M. Zhao, V.Z. Asl, G. Yasin, W. Wang, S.X. Wei, Z.J. Zhao, W.Q. Khan, In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31, Corrosion Science, 157 (2019) 1-10.
[50] Y. Zhang, Y.D. Li, Y.S. Ren, H. Wang, F. Chen, Double-doped LDH films on aluminum alloys for active protection, Materials Letters, 192 (2017) 33-35.
[51] H. Li, F. Peng, D.H. Wang, Y.Q. Qiao, D.M. Xu, X.Y. Liu, Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility, Biomaterials Science, 6 (2018) 1846-1858.
[52] W. Wu, X. Sun, C.L. Zhu, F. Zhang, R.C. Zeng, Y.H. Zou, S.Q. Li, Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31, Progress in Organic Coatings, 147 (2020).
[53] X. Sun, Q.S. Yao, Y.C. Li, F. Zhang, R.C. Zeng, Y.H. Zou, S.Q. Li, Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31, Frontiers of Materials Science, 14 (2020) 426-441.
[54] R.C. Zeng, X.T. Li, Z.G. Liu, F. Zhang, S.Q. Li, H.Z. Cui, Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31, Frontiers of Materials Science, 9 (2015) 355-365.
[55] F.Y. Wang, Z.G. Guo, Insitu growth of durable superhydrophobic Mg-Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance, Journal of Alloys and Compounds, 767 (2018) 382-391.
[56] C.D. Ding, Y. Tai, D. Wang, L.H. Tan, J.J. Fu, Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection, Chemical Engineering Journal, 357 (2019) 518-532.
[57] Y.X. Zhu, G.L. Song, P.P. Wu, J.F. Huang, D.J. Zheng, A protective superhydrophobic Mg-Zn-Al LDH film on Surface-Alloyed Magnesium, Journal of Alloys and Compounds, 855 (2021).
[58] J.D. Zuo, B. Wu, C.Y. Luo, B.Q. Dong, F. Xing, Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution, Corrosion Science, 152 (2019) 120-129.
[59] G. Mascolo, M.C. Mascolo, On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the "memory effect", Microporous and Mesoporous Materials, 214 (2015) 246-248.
[60] R.M.M. Santos, J. Tronto, V. Briois, C.V. Santilli, Thermal decomposition and recovery properties of ZnAl-CO3 layered double hydroxide for anionic dye adsorption: insight into the aggregative nucleation and growth mechanism of the LDH memory effect, Journal of Materials Chemistry A, 5 (2017) 9998-10009.
[61] G.F. Wang, D.L. Huang, M. Cheng, S. Chen, G.X. Zhang, L. Lei, Y.S. Chen, L. Du, R.J. Li, Y. Liu, Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials, Coordination Chemistry Reviews, 460 (2022).
[62] Y.L. Yang, X.L. Yan, X.Y. Hu, R. Feng, M. Zhou, In-situ growth of ZIF-8 on layered double hydroxide: Effect of Zn/Al molar ratios on their structural, morphological and adsorption properties, Journal of Colloid and Interface Science, 505 (2017) 206-212.
[63] M. Zhang, Y. Liu, Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization, New Journal of Chemistry, 44 (2020) 2941-2946.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *