|
References [1] J.G.J. Olivier, J. a. H.W. Peters, G. Janssens-Maenhout, Trends in global CO2 emissions. 2012 Report, (2012). https://doi.org/10.2788/33777. [2] W.-T. Tsai, C.-H. Tsai, Interactive analysis of green building materials promotion with relevance to energy consumption and greenhouse gas emissions from Taiwan’s building sector, Energy and Buildings. 261 (2022) 111959. https://doi.org/10.1016/j.enbuild.2022.111959. [3] T. Kober, H.-W. Schiffer, M. Densing, E. Panos, Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019, Energy Strategy Reviews. 31 (2020) 100523. https://doi.org/10.1016/j.esr.2020.100523. [4] C.-S. Lin, F.-M. Liou, C.-P. Huang, Grey forecasting model for CO2 emissions: A Taiwan study, Applied Energy. 88 (2011) 3816–3820. https://doi.org/10.1016/j.apenergy.2011.05.013. [5] Y.-H. Wu, C.-H. Liu, M.-L. Hung, T.-Y. Liu, T. Masui, Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models, Energy Policy. 132 (2019) 1241–1255. https://doi.org/10.1016/j.enpol.2019.06.043. [6] C.-T. Chang, C.-H. Yang, T.-P. Lin, Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan, Journal of Cleaner Production. 230 (2019) 1241–1255. https://doi.org/10.1016/j.jclepro.2019.05.006. [7] Dual-Function Materials for CO2 Capture and Conversion: A Review | Industrial & Engineering Chemistry Research, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c02218 (accessed December 22, 2023). [8] I. Sullivan, A. Goryachev, I.A. Digdaya, X. Li, H.A. Atwater, D.A. Vermaas, C. Xiang, Coupling electrochemical CO2 conversion with CO2 capture, Nat Catal. 4 (2021) 952–958. https://doi.org/10.1038/s41929-021-00699-7. [9] S.R. Chia, K.W. Chew, H.Y. Leong, S.-H. Ho, H.S.H. Munawaroh, P.L. Show, CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges, Chemical Engineering Journal. 425 (2021) 131436. https://doi.org/10.1016/j.cej.2021.131436. [10] F. Nocito, A. Dibenedetto, Atmospheric CO2 mitigation technologies: carbon capture utilization and storage, Current Opinion in Green and Sustainable Chemistry. 21 (2020) 34–43. https://doi.org/10.1016/j.cogsc.2019.10.002. [11] H. Stančin, H. Mikulčić, X. Wang, N. Duić, A review on alternative fuels in future energy system, Renewable and Sustainable Energy Reviews. 128 (2020) 109927. https://doi.org/10.1016/j.rser.2020.109927. [12] P. Capros, G. Zazias, S. Evangelopoulou, M. Kannavou, T. Fotiou, P. Siskos, A. De Vita, K. Sakellaris, Energy-system modelling of the EU strategy towards climate-neutrality, Energy Policy. 134 (2019) 110960. https://doi.org/10.1016/j.enpol.2019.110960. [13] L. Li, B. Wang, K. Jiao, M. Ni, Q. Du, Y. Liu, B. Li, G. Ling, C. Wang, Comparative techno-economic analysis of large-scale renewable energy storage technologies, Energy and AI. 14 (2023) 100282. https://doi.org/10.1016/j.egyai.2023.100282. [14] M. Jeuland, M. McClatchey, S.R. Patil, S.K. Pattanayak, C.M. Poulos, J.-C. Yang, Do Decentralized Community Treatment Plants Provide Clean Water? Evidence from Rural Andhra Pradesh, India, Land Economics. 97 (2021) 345–371. https://doi.org/10.3368/le.97.2.345. [15] P. Krzeminski, M.C. Tomei, P. Karaolia, A. Langenhoff, C.M.R. Almeida, E. Felis, F. Gritten, H.R. Andersen, T. Fernandes, C.M. Manaia, L. Rizzo, D. Fatta-Kassinos, Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review, Science of The Total Environment. 648 (2019) 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130. [16] S. Raju, M. Carbery, A. Kuttykattil, K. Senthirajah, A. Lundmark, Z. Rogers, S. Scb, G. Evans, T. Palanisami, Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant, Water Research. 173 (2020) 115549. https://doi.org/10.1016/j.watres.2020.115549. [17] X. Liu, Z. Chen, W. Du, P. Liu, L. Zhang, F. Shi, Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption, Journal of Environmental Management. 311 (2022) 114775. https://doi.org/10.1016/j.jenvman.2022.114775. [18] M. Han, H. Wang, W. Jin, W. Chu, Z. Xu, The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation, Journal of Environmental Sciences. 128 (2023) 181–202. https://doi.org/10.1016/j.jes.2022.07.037. [19] Y. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N. Ren, S.-H. Ho, Advanced oxidation processes for water disinfection: Features, mechanisms and prospects, Chemical Engineering Journal. 409 (2021) 128207. https://doi.org/10.1016/j.cej.2020.128207. [20] J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, Chemical Engineering Journal. 401 (2020) 126158. https://doi.org/10.1016/j.cej.2020.126158. [21] A. Saravanan, V.C. Deivayanai, P.S. Kumar, G. Rangasamy, R.V. Hemavathy, T. Harshana, N. Gayathri, K. Alagumalai, A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook, Chemosphere. 308 (2022) 136524. https://doi.org/10.1016/j.chemosphere.2022.136524. [22] Transitional metal chalcogenide nanostructures for remediation and energy: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-021-01269-w (accessed December 22, 2023). [23] P.V. Kamat, K. Sivula, Celebrating 50 Years of Photocatalytic Hydrogen Generation, ACS Energy Lett. 7 (2022) 3149–3150. https://doi.org/10.1021/acsenergylett.2c01889. [24] B. Liu, H. Wu, I.P. Parkin, New Insights into the Fundamental Principle of Semiconductor Photocatalysis, ACS Omega. 5 (2020) 14847–14856. https://doi.org/10.1021/acsomega.0c02145. [25] D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review, Environmental Nanotechnology, Monitoring & Management. 12 (2019) 100255. https://doi.org/10.1016/j.enmm.2019.100255. [26] C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications, Journal of Alloys and Compounds. 828 (2020) 154281. https://doi.org/10.1016/j.jallcom.2020.154281. [27] S. Zhong, Y. Xi, S. Wu, Q. Liu, L. Zhao, S. Bai, Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis, Journal of Materials Chemistry A. 8 (2020) 14863–14894. https://doi.org/10.1039/D0TA04977H. [28] Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity, ACS Catal. 3 (2013) 882–889. https://doi.org/10.1021/cs4000975. [29] F. Costantino, P.V. Kamat, Do Sacrificial Donors Donate H2 in Photocatalysis?, ACS Energy Lett. 7 (2022) 242–246. https://doi.org/10.1021/acsenergylett.1c02487. [30] J. Zhang, Y. Lei, S. Cao, W. Hu, L. Piao, X. Chen, Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles, Nano Res. 15 (2022) 2013–2022. https://doi.org/10.1007/s12274-021-3982-y. [31] N.S. Gultom, H. Abdullah, D.-H. Kuo, Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn(O,S) photocatalyst, International Journal of Hydrogen Energy. 44 (2019) 29516–29528. https://doi.org/10.1016/j.ijhydene.2019.08.066. [32] Y. Jiang, L. Mao, J. Shi, B. Zheng, X. Guan, F. Liu, Effects of mixed sacrificial reagents on hydrogen evolution over typical photocatalysts, JPE. 10 (2019) 023503. https://doi.org/10.1117/1.JPE.10.023503. [33] M. Ismael, Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review, Fuel. 303 (2021) 121207. https://doi.org/10.1016/j.fuel.2021.121207. [34] H. Enzweiler, P.H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M.H.N. Olsen Scaliante, N.R.C. Fernandes, Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting, Journal of Photochemistry and Photobiology A: Chemistry. 388 (2020) 112051. https://doi.org/10.1016/j.jphotochem.2019.112051. [35] T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature. 286 (1980) 474–476. https://doi.org/10.1038/286474a0. [36] L. Lan, H. Daly, R. Sung, F. Tuna, N. Skillen, P.K.J. Robertson, C. Hardacre, X. Fan, Mechanistic Study of Glucose Photoreforming over TiO2-Based Catalysts for H2 Production, ACS Catal. 13 (2023) 8574–8587. https://doi.org/10.1021/acscatal.3c00858. [37] D. Sebastian, A. Pallikkara, H. Bhatt, H.N. Ghosh, K. Ramakrishnan, Unravelling the Surface-State Assisted Ultrafast Charge Transfer Dynamics of Graphene Quantum Dot-Based Nanohybrids via Transient Absorption Spectroscopy, J. Phys. Chem. C. 126 (2022) 11182–11192. https://doi.org/10.1021/acs.jpcc.2c02170. [38] H. Ribeiro, M.C. Schnitzler, W.M. da Silva, A.P. Santos, Purification of carbon nanotubes produced by the electric arc-discharge method, Surfaces and Interfaces. 26 (2021) 101389. https://doi.org/10.1016/j.surfin.2021.101389. [39] X. Wang, Y. Feng, P. Dong, J. Huang, A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application, Frontiers in Chemistry. 7 (2019). https://www.frontiersin.org/articles/10.3389/fchem.2019.00671 (accessed December 22, 2023). [40] S.D. Dsouza, M. Buerkle, P. Brunet, C. Maddi, D.B. Padmanaban, A. Morelli, A.F. Payam, P. Maguire, D. Mariotti, V. Svrcek, The importance of surface states in N-doped carbon quantum dots, Carbon. 183 (2021) 1–11. https://doi.org/10.1016/j.carbon.2021.06.088. [41] O.E. Semonin, J.M. Luther, M.C. Beard, Quantum dots for next-generation photovoltaics, Materials Today. 15 (2012) 508–515. https://doi.org/10.1016/S1369-7021(12)70220-1. [42] A. Roberge, J.H. Dunlap, F. Ahmed, A.B. Greytak, Size-Dependent PbS Quantum Dot Surface Chemistry Investigated via Gel Permeation Chromatography, Chem. Mater. 32 (2020) 6588–6594. https://doi.org/10.1021/acs.chemmater.0c02024. [43] D.R. McMillin, Interatomic Repulsion and the Pauli Principle, J. Chem. Educ. 98 (2021) 2912–2918. https://doi.org/10.1021/acs.jchemed.1c00326. [44] Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review, Energy Storage Materials. 26 (2020) 349–370. https://doi.org/10.1016/j.ensm.2019.11.006. [45] J. Shi, J. Zhang, Z. Cui, S. Chu, Y. Wang, Z. Zou, In situ growth of MOF-derived sulfur vacancy-rich CdS nanoparticles on 2D polymers for highly efficient photocatalytic hydrogen generation, Dalton Transactions. 51 (2022) 5841–5858. https://doi.org/10.1039/D1DT04188F. [46] P.M. Gharat, J.M. Chethodil, A.P. Srivastava, P.K. Praseetha, H. Pal, S.D. Choudhury, An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties, Photochem Photobiol Sci. 18 (2019) 110–119. https://doi.org/10.1039/c8pp00373d. [47] J.D. Stachowska, A. Murphy, C. Mellor, D. Fernandes, E.N. Gibbons, M.J. Krysmann, A. Kelarakis, E. Burgaz, J. Moore, S.G. Yeates, A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea, Sci Rep. 11 (2021) 10554. https://doi.org/10.1038/s41598-021-89984-w. [48] F. Limosani, E.M. Bauer, D. Cecchetti, S. Biagioni, V. Orlando, R. Pizzoferrato, P. Prosposito, M. Carbone, Top-Down N-Doped Carbon Quantum Dots for Multiple Purposes: Heavy Metal Detection and Intracellular Fluorescence, Nanomaterials. 11 (2021) 2249. https://doi.org/10.3390/nano11092249. [49] A.S. Rasal, S. Yadav, A. Yadav, A.A. Kashale, S.T. Manjunatha, A. Altaee, J.-Y. Chang, Carbon Quantum Dots for Energy Applications: A Review, ACS Appl. Nano Mater. 4 (2021) 6515–6541. https://doi.org/10.1021/acsanm.1c01372. [50] D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy, J. Phys. Chem. Lett. 12 (2021) 8939–8946. https://doi.org/10.1021/acs.jpclett.1c02475. [51] L. Joseph Desmond, A. N. Phan, P. Gentile, Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy, Environmental Science: Nano. 8 (2021) 848–862. https://doi.org/10.1039/D1EN00017A. [52] Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On–Off Metal Ions Nanosensing | ACS Sustainable Chemistry & Engineering, (n.d.). https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c08594 (accessed December 23, 2023). [53] M.R. Hasan, N. Saha, T. Quaid, M.T. Reza, Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors, Energies. 14 (2021) 986. https://doi.org/10.3390/en14040986. [54] C. Michelin, N. Hoffmann, Photosensitization and Photocatalysis—Perspectives in Organic Synthesis, ACS Catal. 8 (2018) 12046–12055. https://doi.org/10.1021/acscatal.8b03050. [55] F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores, Nano Lett. 17 (2017) 7710–7716. https://doi.org/10.1021/acs.nanolett.7b03863. [56] C.J. Reckmeier, J. Schneider, Y. Xiong, J. Häusler, P. Kasák, W. Schnick, A.L. Rogach, Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots, Chem. Mater. 29 (2017) 10352–10361. https://doi.org/10.1021/acs.chemmater.7b03344. [57] Organic Photoredox Catalysis | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.chemrev.6b00057 (accessed December 18, 2023). [58] Y. Zhang, T.S. Lee, J.L. Petersen, C. Milsmann, A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer, J. Am. Chem. Soc. 140 (2018) 5934–5947. https://doi.org/10.1021/jacs.8b00742. [59] V. Strauss, J.T. Margraf, K. Dirian, Z. Syrgiannis, M. Prato, C. Wessendorf, A. Hirsch, T. Clark, D.M. Guldi, Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides, Angewandte Chemie International Edition. 54 (2015) 8292–8297. https://doi.org/10.1002/anie.201502482. [60] F. Arcudi, V. Strauss, L. Đorđević, A. Cadranel, D.M. Guldi, M. Prato, Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction, Angewandte Chemie International Edition. 56 (2017) 12097–12101. https://doi.org/10.1002/anie.201704544. [61] I. Srivastava, J.S. Khamo, S. Pandit, P. Fathi, X. Huang, A. Cao, R.T. Haasch, S. Nie, K. Zhang, D. Pan, Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk-State and Single-Particle Level, Advanced Functional Materials. 29 (2019) 1902466. https://doi.org/10.1002/adfm.201902466. [62] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications, Nano Today. 19 (2018) 201–218. https://doi.org/10.1016/j.nantod.2018.02.008. [63] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface Functionalized Carbogenic Quantum Dots, Small. 4 (2008) 455–458. https://doi.org/10.1002/smll.200700578. [64] A. Tayyebi, O. Akhavan, B.-K. Lee, M. Outokesh, Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues, Carbon. 130 (2018) 267–272. https://doi.org/10.1016/j.carbon.2017.12.057. [65] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions, Anal. Chem. 84 (2012) 6220–6224. https://doi.org/10.1021/ac3012126. [66] Y. Mao, Y. Bao, D. Han, F. Li, L. Niu, Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing, Biosensors and Bioelectronics. 38 (2012) 55–60. https://doi.org/10.1016/j.bios.2012.04.043. [67] R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions, Biosensors and Bioelectronics. 55 (2014) 83–90. https://doi.org/10.1016/j.bios.2013.11.074. [68] Y.-Q. Zhang, D.-K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.-L. Hong, Q.-X. Yan, K. Yu, S.-M. Huang, One-pot synthesis of N-doped carbon dots with tunable luminescence properties, Journal of Materials Chemistry. 22 (2012) 16714–16718. https://doi.org/10.1039/C2JM32973E. [69] F. Qian, X. Li, L. Tang, S.K. Lai, C. Lu, S.P. Lau, Potassium doping: Tuning the optical properties of graphene quantum dots, AIP Advances. 6 (2016) 075116. https://doi.org/10.1063/1.4959906. [70] X. Ren, J. Liu, J. Ren, F. Tang, X. Meng, One-pot synthesis of active copper-containing carbon dots with laccase-like activities, Nanoscale. 7 (2015) 19641–19646. https://doi.org/10.1039/C5NR04685H. [71] Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration, Nanoscale. 8 (2016) 17919–17927. https://doi.org/10.1039/C6NR05434J. [72] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, Journal of Materials Chemistry A. 6 (2018) 11606–11630. https://doi.org/10.1039/C8TA00671G. [73] D. Lang, F. Liu, G. Qiu, X. Feng, Q. Xiang, Synthesis and Visible-Light Photocatalytic Performance of Cadmium Sulfide and Oxide Hexagonal Nanoplates, ChemPlusChem. 79 (2014) 1726–1732. https://doi.org/10.1002/cplu.201402220. [74] R. Sasikala, A.P. Gaikwad, V. Sudarsan, N. Gupta, S.R. Bharadwaj, Cubic phase indium doped cadmium sulfide dispersed on zinc oxide: Enhanced photocatalytic activity for hydrogen generation from water, Applied Catalysis A: General. 464–465 (2013) 149–155. https://doi.org/10.1016/j.apcata.2013.05.037. [75] Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-020-01066-x (accessed December 24, 2023). [76] J. Kundu, S. Khilari, D. Pradhan, Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures, ACS Appl. Mater. Interfaces. 9 (2017) 9669–9680. https://doi.org/10.1021/acsami.6b16456. [77] S.S. Arbuj, S.R. Bhalerao, S.B. Rane, U.P. Mulik, D.P. Amalnerkar, Solvothermal Synthesis of One Dimensional Copper Doped Cadmium Sulphide Nanorods and Their Photocatalytic Performance, Journal of Nanoengineering and Nanomanufacturing. 3 (2013) 107–113. https://doi.org/10.1166/jnan.2013.1123. [78] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073. [79] S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, A Facile Template-Free Approach for the Large-Scale Solid-Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance, Small. 7 (2011) 957–964. https://doi.org/10.1002/smll.201002130. [80] H. Yu, W. Zhong, X. Huang, P. Wang, J. Yu, Suspensible Cubic-Phase CdS Nanocrystal Photocatalyst: Facile Synthesis and Highly Efficient H2-Evolution Performance in a Sulfur-Rich System, ACS Sustainable Chem. Eng. 6 (2018) 5513–5523. https://doi.org/10.1021/acssuschemeng.8b00398. [81] K.C. Wilson, M. Basheer Ahamed, Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition, Applied Surface Science. 361 (2016) 277–282. https://doi.org/10.1016/j.apsusc.2015.11.184. [82] L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys. 13 (2011) 8915–8923. https://doi.org/10.1039/C1CP20079H. [83] Quantum confinement in Si and Ge nanostructures: Theory and experiment | Applied Physics Reviews | AIP Publishing, (n.d.). https://pubs.aip.org/aip/apr/article/1/1/011302/123949/Quantum-confinement-in-Si-and-Ge-nanostructures (accessed December 24, 2023). [84] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B. 46 (1992) 15578–15581. https://doi.org/10.1103/PhysRevB.46.15578. [85] M.S. Hybertsen, Absorption and emission of light in nanoscale silicon structures, Phys. Rev. Lett. 72 (1994) 1514–1517. https://doi.org/10.1103/PhysRevLett.72.1514. [86] A. Wu, Q. Song, H. Liu, Oxygen atom adsorbed on the sulphur vacancy of monolayer MoS2: A promising method for the passivation of the vacancy defect, Computational and Theoretical Chemistry. 1187 (2020) 112906. https://doi.org/10.1016/j.comptc.2020.112906. [87] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nature Mater. 15 (2016) 48–53. https://doi.org/10.1038/nmat4465. [88] K. Sharma, A. Kumar, T. Ahamad, Q.V. Le, P. Raizada, A. Singh, L.H. Nguyen, S. Thakur, V.-H. Nguyen, P. Singh, Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review, Journal of Materials Science & Technology. 152 (2023) 50–64. https://doi.org/10.1016/j.jmst.2022.11.053. [89] S.M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, D. Beljonne, Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies, J. Phys. Chem. C. 124 (2020) 15076–15084. https://doi.org/10.1021/acs.jpcc.0c04203. [90] Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2, J. Phys.: Condens. Matter. 30 (2018) 125302. https://doi.org/10.1088/1361-648X/aaad3b. [91] T. Su, C. Men, L. Chen, B. Chu, X. Luo, H. Ji, J. Chen, Z. Qin, Sulfur Vacancy and Ti3C2Tx Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti3C2Tx/ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Evolution, Advanced Science. 9 (2022) 2103715. https://doi.org/10.1002/advs.202103715. [92] Vacancy Engineering for Tuning Electron and Phonon Structures of Two‐Dimensional Materials - Liu - 2016 - Advanced Energy Materials - Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201600436 (accessed December 24, 2023). [93] S. Lolla, X. Luo, Tuning the catalytic properties of monolayer MoS2 through doping and sulfur vacancies, Applied Surface Science. 507 (2020) 144892. https://doi.org/10.1016/j.apsusc.2019.144892. [94] D. Le, T.B. Rawal, T.S. Rahman, Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application, J. Phys. Chem. C. 118 (2014) 5346–5351. https://doi.org/10.1021/jp411256g. [95] K. Li, M. Han, R. Chen, S.-L. Li, S.-L. Xie, C. Mao, X. Bu, X.-L. Cao, L.-Z. Dong, P. Feng, Y.-Q. Lan, Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability, Advanced Materials. 28 (2016) 8906–8911. https://doi.org/10.1002/adma.201601047. [96] Z. Ai, G. Zhao, Y. Zhong, Y. Shao, B. Huang, Y. Wu, X. Hao, Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation, Applied Catalysis B: Environmental. 221 (2018) 179–186. https://doi.org/10.1016/j.apcatb.2017.09.002. [97] Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li, Y. Zhao, Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution, Angewandte Chemie. 130 (2018) 5867–5873. https://doi.org/10.1002/ange.201802014. [98] S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review, Journal of Cleaner Production. 228 (2019) 755–769. https://doi.org/10.1016/j.jclepro.2019.04.292. [99] Y. Lei, C. Yang, J. Hou, F. Wang, S. Min, X. Ma, Z. Jin, J. Xu, G. Lu, K.-W. Huang, Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots, Applied Catalysis B: Environmental. 216 (2017) 59–69. https://doi.org/10.1016/j.apcatb.2017.05.063. [100] J. Guo, M. Guo, D. Jia, X. Song, F. Tong, CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property, Chemical Physics Letters. 659 (2016) 66–69. https://doi.org/10.1016/j.cplett.2016.07.001. [101] A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst. 140 (2015) 4260–4269. https://doi.org/10.1039/C5AN00454C. [102] Y. Pei, R. Pei, X. Liang, Y. Wang, L. Liu, H. Chen, J. Liang, CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process, Sci Rep. 6 (2016) 21551. https://doi.org/10.1038/srep21551. [103] C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting, Applied Catalysis B: Environmental. 216 (2017) 114–121. https://doi.org/10.1016/j.apcatb.2017.05.049. [104] S.P. Smrithi, N. Kottam, A. Narula, G.M. Madhu, R. Mohammed, R. Agilan, Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation, Journal of Colloid and Interface Science. 627 (2022) 956–968. https://doi.org/10.1016/j.jcis.2022.07.100. [105] C. Tang, Y. Zhang, J. Han, Z. Tian, L. Chen, J. Chen, Monitoring graphene oxide’s efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels, Environmental Pollution. 262 (2020) 114246. https://doi.org/10.1016/j.envpol.2020.114246. [106] C. Zhu, C. Liu, Y. Fu, J. Gao, H. Huang, Y. Liu, Z. Kang, Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater, Applied Catalysis B: Environmental. 242 (2019) 178–185. https://doi.org/10.1016/j.apcatb.2018.09.096. [107] M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency, J. Am. Chem. Soc. 133 (2011) 16414–16417. https://doi.org/10.1021/ja207826q. [108] C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet, M. Valcárcel, Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications. 0 (2009) 5214–5226. https://doi.org/10.1039/B904381K. [109] M. Wang, Z. Wang, B. Zhang, W. Jiang, X. Bao, H. Cheng, Z. Zheng, P. Wang, Y. Liu, M.-H. Whangbo, Y. Li, Y. Dai, B. Huang, Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs, ACS Catal. 10 (2020) 13031–13039. https://doi.org/10.1021/acscatal.0c03671. [110] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061. [111] R. Roshan, B.K. Nahak, D. Mahata, P. Yadav, S. Panda, S. Patra, S.S. Mahato, A. Tiwari, S. Mahata, Photocatalytic waste-to-renewable energy nexus using solar light induced quantum dots, Energy Conversion and Management. 283 (2023) 116917. https://doi.org/10.1016/j.enconman.2023.116917. [112] A.-M. Alam, B.-Y. Park, Z. Khan Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chemistry. 17 (2015) 3791–3797. https://doi.org/10.1039/C5GC00686D. [113] B.K. Nahak, R. Roshan, S.D. Roy, A. Patra, A. Sahu, S. Panda, S. Panda, S.S. Mahato, S. Mahata, Phase transformation driven enhanced photocatalytic activity of capped CeS2-CdS composites, J Mater Sci: Mater Electron. 33 (2022) 15191–15208. https://doi.org/10.1007/s10854-022-08438-9. [114] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Solvothermal synthesis of activated carbon loaded CdS nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy, Chemical Physics Letters. 744 (2020) 137202. https://doi.org/10.1016/j.cplett.2020.137202. [115] L. Wu, J.C. Yu, X. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, Journal of Molecular Catalysis A: Chemical. 244 (2006) 25–32. https://doi.org/10.1016/j.molcata.2005.08.047. [116] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana, Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states, Physical Chemistry Chemical Physics. 17 (2015) 2850–2858. https://doi.org/10.1039/C4CP04761C. [117] W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere. 218 (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175. [118] Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, B. Li, Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB, Catalysis Today. 264 (2016) 250–256. https://doi.org/10.1016/j.cattod.2015.08.006. [119] M. Moniruzzaman, J. Kim, Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application, Applied Surface Science. 552 (2021) 149372. https://doi.org/10.1016/j.apsusc.2021.149372. [120] I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation, Applied Catalysis B: Environmental. 207 (2017) 412–423. https://doi.org/10.1016/j.apcatb.2017.02.028. [121] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Crystal structures, morphological, optical, adsorption, kinetic and photocatalytic degradation studies of activated carbon loaded BiOBr nanoplates prepared by solvothermal method, Inorganic Chemistry Communications. 104 (2019) 134–144. https://doi.org/10.1016/j.inoche.2019.04.002. [122] H. Ait Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, F. Guinneton, J.-R. Gavarri, Novel Lu-doped Bi2WO6 nanosheets: Synthesis, growth mechanisms and enhanced photocatalytic activity under UV-light irradiation, Ceramics International. 42 (2016) 8552–8558. https://doi.org/10.1016/j.ceramint.2016.02.082. [123] M. Sachs, R.S. Sprick, D. Pearce, S.A.J. Hillman, A. Monti, A.A.Y. Guilbert, N.J. Brownbill, S. Dimitrov, X. Shi, F. Blanc, M.A. Zwijnenburg, J. Nelson, J.R. Durrant, A.I. Cooper, Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution, Nat Commun. 9 (2018) 4968. https://doi.org/10.1038/s41467-018-07420-6. [124] W. Shi, F. Guo, M. Li, Y. Shi, Y. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Separation and Purification Technology. 212 (2019) 142–149. https://doi.org/10.1016/j.seppur.2018.11.028. [125] N.N. Yunus, F. Hamzah, M.S. So’aib, J. Krishnan, Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2, IOP Conf. Ser.: Mater. Sci. Eng. 206 (2017) 012092. https://doi.org/10.1088/1757-899X/206/1/012092. [126] Y. Tang, X. Hu, C. Liu, Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO 2 nanotube array for highly stable photocatalytic activity, Physical Chemistry Chemical Physics. 16 (2014) 25321–25329. https://doi.org/10.1039/C4CP04057K. [127] J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Morphology-dependent photocatalytic H2-production activity of CdS, Applied Catalysis B: Environmental. 156–157 (2014) 184–191. https://doi.org/10.1016/j.apcatb.2014.03.013. [128] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073. [129] A. Hernández-Gordillo, S. Oros-Ruiz, R. Gómez, Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template, Journal of Colloid and Interface Science. 451 (2015) 40–45. https://doi.org/10.1016/j.jcis.2015.03.052. [130] Y. Liu, Y. Ma, W. Liu, Y. Shang, A. Zhu, P. Tan, X. Xiong, J. Pan, Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy, Journal of Colloid and Interface Science. 513 (2018) 222–230. https://doi.org/10.1016/j.jcis.2017.11.030. [131] Y. Liu, Y.-X. Yu, W.-D. Zhang, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance, Journal of Alloys and Compounds. 569 (2013) 102–110. https://doi.org/10.1016/j.jallcom.2013.03.202. [132] S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials, Nano Energy. 53 (2018) 296–336. https://doi.org/10.1016/j.nanoen.2018.08.058. [133] P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, Hexagonal Planar CdS Monolayer Sheet for Visible Light Photocatalysis, J. Phys. Chem. C. 120 (2016) 7052–7060. https://doi.org/10.1021/acs.jpcc.6b01622. [134] R.R. Prabhu, M. Abdul Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bull Mater Sci. 31 (2008) 511–515. https://doi.org/10.1007/s12034-008-0080-7. [135] K. Gong, D.F. Kelley, A.M. Kelley, Resonance Raman Spectroscopy and Electron–Phonon Coupling in Zinc Selenide Quantum Dots, J. Phys. Chem. C. 120 (2016) 29533–29539. https://doi.org/10.1021/acs.jpcc.6b12202. [136] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061. [137] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061. [138] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117. [139] Template-Free Hydrothermal Synthesis of Novel Three-Dimensional Dendritic CdS Nanoarchitectures | The Journal of Physical Chemistry C, (n.d.). https://pubs.acs.org/doi/full/10.1021/jp810155r (accessed August 21, 2023). [140] Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S138589472030423X (accessed November 13, 2023). [141] J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An, W. Cui, Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer, Journal of Colloid and Interface Science. 600 (2021) 138–149. https://doi.org/10.1016/j.jcis.2021.05.013. [142] Z. Jin, Y. Liu, X. Hao, Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity, Journal of Colloid and Interface Science. 567 (2020) 357–368. https://doi.org/10.1016/j.jcis.2020.02.024. [143] P. He, L. Zhang, L. Wu, X. Yang, T. Chen, Y. Li, X. Yang, L. Zhu, Q. Meng, T. Duan, Synergistic Effect of the Sulfur Vacancy and Schottky Heterojunction on Photocatalytic Uranium Immobilization: The Thermodynamics and Kinetics, Inorg. Chem. 61 (2022) 2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552. [144] B. Chai, M. Xu, J. Yan, Z. Ren, Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres, Applied Surface Science. 430 (2018) 523–530. https://doi.org/10.1016/j.apsusc.2017.07.292. [145] K. Sridharan, E. Jang, J.H. Park, J.-H. Kim, J.-H. Lee, T.J. Park, Silver Quantum Cluster (Ag9)-Grafted Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Generation and Dye Degradation, Chemistry – A European Journal. 21 (2015) 9126–9132. https://doi.org/10.1002/chem.201500163. [146] X. Hao, Y. Hu, Z. Cui, J. Zhou, Y. Wang, Z. Zou, Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting, Applied Catalysis B: Environmental. 244 (2019) 694–703. https://doi.org/10.1016/j.apcatb.2018.12.006. [147] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye, Chemical Engineering Journal. 169 (2011) 126–134. https://doi.org/10.1016/j.cej.2011.02.066. [148] H. Ullah, E. Viglašová, M. Galamboš, Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods, Processes. 9 (2021) 263. https://doi.org/10.3390/pr9020263. [149] R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire, Chemical Physics Letters. 684 (2017) 126–134. https://doi.org/10.1016/j.cplett.2017.06.021. [150] X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt(IV) under Visible Light Irradiation: N-Deethylation, Chromophore Cleavage, and Mineralization, J. Phys. Chem. B. 110 (2006) 26012–26018. https://doi.org/10.1021/jp063588q. [151] K. Hu, C. Ming, Y. Liu, C. Zheng, S. Zhang, D. Wang, W. Zhao, F. Huang, Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity, Chinese Chemical Letters. 31 (2020) 2809–2813. https://doi.org/10.1016/j.cclet.2020.07.052.
|