帳號:guest(3.145.39.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):比沙爾納哈克
作者(外文):Nahak, Bishal Kumar
論文名稱(中文):用於高效制氫的碳量子點支撐 CdS 光催化劑的形態誘導缺陷和晶體工程
論文名稱(外文):Morphology-Induced Defects and Crystal Engineering of Carbon Quantum Dot-Supported CdS Photocatalysts for Efficient Hydrogen Production
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):胡哲嘉
陳燦耀
口試委員(外文):Hu, Chechia
Chen, Tsan-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:110011421
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:119
中文關鍵詞:硫化鎘硫化鎘硫空位方面工程光催化氫氣
外文關鍵詞:Cadmium SulphideCadmium SulphideSulphur VacancyFacet EngineeringPhotocatalysisHydrogen generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光致發光碳量子點(CQD)由於其優異的光學性質、強的限域效應和良好的導電性而引起了人們的廣泛關注。然而,CQD的可持續合成及其在水分解中的應用尚未得到很好的探索。在此,我們從葡萄糖合成了CQD和氮摻雜CQD,並透過水熱法將它們修飾到CdS奈米球上。使用各種光譜、顯微鏡和電化學技術對合成的光催化劑進行了徹底的表徵。據觀察,CQD 中氮的存在會導致活性位點阻塞,從而減少表面積。所開發的 CQD 負載 CdS 奈米球顯示光催化羅丹明 B 染料在 60 分鐘內降解 97%,並在 10 小時 產生 80,450 μmolg-1 的氫氣。發現CQD的最佳負載量為3mL,進一步增加CQD的量會阻礙光與光催化劑的相互作用。
為了進一步提高產氫率,CdS 奈米花具有一種新穎的尺寸依賴性光穩定性,及其對硫空位和晶面的影響。為了進一步增強光催化性能,我們在 CdS 奈米結構上引入了CQD。所得複合材料表現出令人印象深刻的可見光響應氫生成速率,高達 120748 µmolg-1。這歸因於暴露的 CdS (002) 晶面和增加的硫空位有助於在延長的 30 小時內實現更好的電荷分離和更高的穩定性,這可以從 PL 曲線的壽命延長得到證明。所開發的光催化劑的可持續性透過綠豆植物生長進行了測試,證實了其環境友善性。
Photoluminescent carbon quantum dots (CQD) have drawn intense attention due to its excellent optical properties, strong confinement effect, and good electrical conductivity. However, sustainable synthesis of CQD and its application in water splitting has not been well explored. Herein, we synthesized CQD, and nitrogen doped CQD from glucose and decorated them onto CdS nanospheres via hydrothermal method. The synthesized photocatalysts were thoroughly characterized using various spectroscopic, microscopic, and electrochemical techniques. It was observed the presence of nitrogen at CQD causes blocking of active sites that reduces the surface area. The developed CQD loaded CdS nanospheres showed a photocatalytic Rhodamine B dye degradation of 97% in 60 min and hydrogen generation of 80,450 μmolg-1 in 10 hr. The optimal amount of CQD loading was found to be 3mL, further increasing the CQD amount hinders the light interaction with photocatalyst.
Further to enhance the hydrogen generation yield, a novel size dependent photostability of CdS nanoflowers has been reported, along its effect on sulphur vacancies and crystal facet. To further augment the photocatalytic performance, we introduce CQDs on CdS nanostructures. The resulting composite exhibited an impressive visible-light-responsive hydrogen generation rate of 120748 µmolg-1. This attributed to exposed CdS (002) crystal facet with increased sulphur vacancy helped in attaining better charge separation and increased stability over an extended 30-hour period, which can be evidenced from increased lifetime from PL curves. The sustainability of developed photocatalyst was tested via Vigna Radiata plant growth, that confirms its environmental friendliness.
Table of Contents
抽象的…………………………………………..……………………………………………..ii
Abstract…………………………………………..…………………………………………..iii
Acknowledgement…………………………………………..……………………………….iv
Abbreviations…….……………..…………………………..………………………………...v
List of Contents…...……………..…………………………..……………………………....vii
List of Figures…….……………..…………………………..………………………………xii
List of Tables……..………………………...………………..……………………………..xvii
Chapter 1: Visible Light Responsive Photocatalysis
1. Introduction
1.1. Rising CO2 Emissions………………………………………………..…………….1
1.2. CO2 capture, Reuse and Recycle………………………………………………..….2
1.3. Future Fuel- Hydrogen…………………………………………..…………………2
1.3.1. Grey, Blue, Green Hydrogen………………………………………………......3
1.4. Challenges and Implications involved in Hydrogen Economy…………………….3
1.5. Water Pollution…………………………………….………….…………………...4
1.6. Advanced Oxidation Process for wastewater treatment……………………..…..…4
2. Solar Light driven Photocatalytic Systems…………………………………………….5
2.1. Basic Mechanism behind photocatalysis………….……………………………….6
2.2. Using Oxygenates for H2 production: Sacrificial agents……………………..…….8
2.2.1. Sacrificial Reagent: Methanol……………………………………...………….9
Chapter 2: Carbon based non-noble metal co-catalyst
3. Quantum Dots…………………………………………………………….…………..10
3.1. Photoluminescence property of Carbon Quantum Dots……………………..……10
3.1.1. Quantum confinement effect ……………………………………………..…..10
3.1.2. Surface State Emissions……………………………………………………....11
3.1.3. Molecular State Emissions…………………………………………………....11
3.2. Synthesis of Carbon Quantum Dots………………………………………….…...12
3.2.1. Top to Down approach……………………………………………………..…12
3.2.2. Bottom Up approach….………………………………………………….…...12
3.2.2.1. Hydrothermal ……...…………………………………………………………13
4. Photocatalytic action of Carbon Quantum Dots……………………………………....15
4.1. Carbon Quantum Dots as an individual photocatalyst ………………….………..15
4.2. Photosensitization……………………………………………………………..….16
4.3. Electron Mediators ………….……………………………………………………16
4.4. Up conversion Photoluminescence………………………………………..……...17
4.5. Modifications of Carbon Quantum Dots …………...…………………………….18
4.5.1. In terms of Size…………………………………………………………..…...18
4.5.2. Surface Functionalization…………………………………………………….19
4.5.3. Elemental doping………………………………………………………..........19
Chapter 3: Cadmium Sulphide: Synthesis routes and tailoring its properties
5. Why Cadmium Sulphide?…………………………………………..………………...21
5.1. Crystal Structure, Optical properties, and Phase Transitions………………...…...21
5.2. Synthesis strategies for CdS……………………………………………………....22
5.2.1. Hydrothermal synthesis method ..………………………………………….....22
5.2.2. Solvothermal Synthetic Methods…………………………………………..…22
5.2.3. Template Methods and Template Free Methods……………………………...23
5.2.4. Chemical Bath deposition…………………………………………………….23
5.3. Drawbacks of CdS………………………………………………………..………24
6. Enhancement of CdS based photocatalytic systems………………………..…..……..25
6.1. Morphology dependent visible light photocatalysis …………………………..….25
6.2. Sulphur vacancy………………………………………………………………….27
6.3. Crystal Engineering………………………………………………………...…….29
6.4. Use of electron rich co-catalyst……………………………………..…………….32
Chapter 4: Synthesis of Carbon Quantum Dots and its Properties
7. Carbon quantum Dots……………………………………………………....………...34
7.1. Experimentation details…………..………………………………………………34
7.1.1. Characterization details……………………………………………………....34
7.1.2. Materials Required…………………………………………………………...35
7.1.3. Synthesis of Carbon Quantum Dots………………………………………..…35
7.2. Results and Discussion…………………………………………………………...35
7.2.1. X-Ray Diffraction………………………………………………………….....35
7.2.2. Morphology Study-Transmission Electron Microscopy……………………...36
7.2.3. Optical Properties…………………………………………………………….37
7.2.4. Fourier Transform Infrared Spectroscopy…………………………………….39
Chapter 5 Synthesis of CQDs loaded CdS nanospheres
8. Introduction ……………………………………………………………………...…..40
8.1. Experimental details……………………………………………………………...41
8.1.1. Materials Required………………………………………………………..….41
8.1.2. CdS nanospheres……………………………………………………………...41
8.1.3. Photocatalytic Experiment…………………………………………………....43
8.1.3.1. Hydrogen generation…………………………………………………………43
8.1.3.2. Dye degradation………………………………………………………………43
8.1.4. Photocatalyst sustainability test…………………………………………..…..44
8.2. Results and Discussion…………………………………………………………...45
8.2.1. Morphological Properties: Scanning Electron Microscope and Transmission Electron Microscope……………………………………………………….....45
8.2.2. X-Ray Diffraction…………………………………………………………...47
8.2.3. Optical Properties………………………………………………………….....51
8.2.3.1. Absorbance Spectroscopy………………………………………………….....51
8.2.3.2. Photoluminescence……………………………………………………..…….53
8.2.4. Fourier Transform Infrared Spectroscopy………………………………..…...55
8.2.5. BET Surface area……………………………………………………………..56
8.2.6. X-Ray Photoelectron Spectroscopy……………………………………..……57
8.3. Photocatalytic Performance………………………………………………………61
8.3.1. Rhodamine B dye degradation……………..……………………………..61
8.3.2. Hydrogen Generation …………………………………………………….65
8.3.3. Proposed Mechanism……………………………………………………..70
Chapter 6: Tailoring properties: Effects of morphology variation and crystal defects
9. Introduction………………………….……………………………………………….73
9.1. Experimental Details……………………………………………………………..74
9.1.1. Materials Required……………………………………………………..…….74
9.1.2. Synthesis of Bare CdS Nanorods………………………………………..……74
9.1.3. Synthesis of CdS Nanoflowers…………………………………………..…...74
9.1.4. Photocatalytic Experiment………………………………………………..…..75
9.2. Results and Discussion…………………………………………………………...75
9.2.1. Growth Mechanism…………………………………………………………..75
9.2.2. Morphological analysis of photocatalyst…………………………………..…78
9.2.3. Structural and Elemental analysis of Photocatalyst…………………………...80
9.2.3.1. X-Ray Diffraction Analysis…………………………………………………..80
9.2.3.2. Raman Spectroscopy…………………………………………………………83
9.2.3.3. Fourier Transform Infrared Spectroscopy…………………………………….83
9.2.3.4. BET surface and Pore size distribution……………………………………….84
9.2.3.5. X-Ray Photoelectron Spectroscopy…………………………………………..86
9.2.4. Spectroscopy analysis of Photocatalyst……………………………..………..88
9.2.4.1. Band Structure Study…………………………………………………………88
9.2.4.2. Photoluminescence Spectroscopy…………………………………………….90
9.2.5. Electrochemical and surface defects analysis of photocatalyst………….........90
9.2.5.1. Time Resolved Photoluminescence Decay Spectroscopy…………………….90
9.2.5.2. Electro Impedance Spectroscopy…………………………….……………….91
9.2.5.3. Transient Photocurrent Response…………………………………………….92
9.2.5.4. Electron Spin Resonance Spectra…………………………………………….94
9.3. Photocatalytic Performance……………………………………………………....95
9.3.1. Rhodamine B dye degradation……………………………………..…..……..95
9.3.2. Hydrogen generation…………………………………………………..……..99
9.3.3. Proposed Mechanism……………………………………………………..…102
Conclusion……………………………………………………………………………….....105
References………………………………………………………………………..………...106


List of Figures
Chapter 1: Visible Light Responsive Photocatalysis
Fig 1.1 shows type of Hydrogen generation and the amount of CO2 liberated from it……….....2
Fig 1.2 shows the different Advanced Oxidation Process used for water sterilization…….…...4
Fig 1.3 shows basic mechanism involved in photocatalysis…………………..………………..6
Fig 1.4 shows band position of semiconductors in relation with the redox potentials of Water splitting. The position of the CB and VB edges are presented relative to the NHE at pH 0…......8
Chapter 2: Carbon based non-noble metal co-catalyst
Fig 2.1 shows (a) absorbance spectra representing the size tunability of PbS QDs 3-10 nm. (b) Simplified Jablonski diagram for surface state mediated fluorescence………………….……11
Fig 2.2 shows different results for synthesis of CQDs………………………………………...12
Fig 2.3 shows (a) excited-state processes for doped C-dots excited at core state (at 320 nm) and surface state (at 420 nm). (b) Steady-state absorption (solid lines) and emission (dashed lines) spectra and c) time-resolved emission measurements of the doped C-dots…...………………15
Fig 2.4 shows (a) C-dots without any surface modification. (b) C-dots modified with electron donor groups and (c) C-dots modified with electron acceptors group. (d–f) Density functional theory calculations performed on (a–c), respectively, to calculate the energy levels as well as HOMO and LUMO of the molecules…………………………………………………………17
Chapter 3: Cadmium Sulphide: Synthesis routes and tailoring its properties
Fig 3.1 shows a brief description about CdS properties and its potential applications………...21
Fig 3.2 shows the various synthesis routes for CdS photocatalysts…………………...………22
Fig 3.3 shows the DOS confinement of nanoparticles for different dimensionality…………..27
Fig 3.4 shows the regulation of band structure through phase unction with bonding region…30
Fig 3.5 schematic of the effect of solvent and additive/impurity molecules or ions on the morphological control of crystal facets……………………………………………………….31
Chapter 4: Synthesis of Carbon Quantum Dots and its Properties
Fig 4.1 shows the X-ray diffraction pattern of synthesized CQD samples…………………….36
Fig 4.2 shows the TEM images of synthesized Carbon Quantum Dots (CQDs)………………37
Fig 4.3 shows the absorbance (a, b) and photoluminescence spectrum (c) of synthesized CQDs and N-CQDs samples…………………………………………………………….…………...38
Fig 4.4 shows FTIR spectrum of CQDs and N-CQDs samples…………………………….....39
Chapter 5 Synthesis of CQDs loaded CdS nanospheres
Fig 5.1 shows the synthesis procedure of CQD@CdS nanospheres…………………………..42
Fig 5.2 shows (a) SEM and TEM images of (b) CQD@CdS, (c) CQD. (d-g) Elemental mapping, EDAX of (h) CQD@CdS and (i) N-CQD@CdS.......................................................45
Fig 5.3 shows the (a) particle size distribution of CQDs, Elemental mapping of (b) N-CQD@CdS, SEM images of N-CQD@CdS and PVP@CdS....................................................46
Fig 5.4 shows (a) diffraction pattern for all CdS samples. (b) SAED pattern and (c) lattice fringes of the developed CQD@CdS confirms its mixed phase structure…………………….49
Fig 5.5 shows absorbance spectrum of (a) PVP@CdS, (b) CQD@CdS and N-CQD@CdS and bandgap analysis was done using Tauc plot for CQD@CdS and N-CQD@CdS samples and (d) Photoluminescence spectra for different CdS samples…………………………………..……52
Fig 23 shows the FTIR spectra for all CdS samples…………………………………………..55
Fig 5.7 shows (a-c) BET surface area and (d) average pore size distribution, total pore volumes for all CdS samples…………………………………………………………………………...57
Fig 25 shows XPS spectra of full survey scan from PVP@CdS, CQD@CdS and N-CQD@CdS samples……………………………………………………………………………………….59
Fig 5.9 shows the XPS spectra of PVP@CdS, CQD@CdS and N-CQD@CdS samples with their respective (a, d, g) Cd 3d, (b, e, h) S 2p and (c, f, i) C 1s elements and (j) ESR spectra of CQD@CdS and N-CQD@CdS samples……………………………..………………………60
Fig 5.10 shows Rhodamine B degradation absorbance spectrum by (a) N-CQD@CdS (b) CQD@CdS samples. (c) dye degradation efficiency and pseudo-second order kinetic plot (d) color change of dye in 60 min time period……………………………………………………64
Fig 5.11 shows (a) time dependent photocatalytic hydrogen generation, (b) average hydrogen generation rate in every hour by all CdS samples. The average hydrogen generation with (c) varying the (c) ratio of CQD and CdS and with (d) amount of CQD@CdS photocatalyst……67
Fig 5.12 shows the (a) time dependent hydrogen generation in seawater for 10 hrs time period, (b) average hydrogen generation by all CdS samples in seawater. (c) EIS spectroscopy and (d) mott-schottky pots for CQD@CdS and N-CQD@CdS samples. (e) shows the photo catalyst reusability and time dependent photocurrent for CQD@CdS samples……………………….68
Fig 5.13 shows (a) band positions of CQD@CdS and N-CQD@CdS photocatalyst. The photocatalytic hydrogen generation mechanism (b) for phase engineered, sulphur vacancy enriched and CQD loaded CdS nanostructures……………………………………………….71


Chapter 6: Tailoring properties: Effects of morphology variation and crystal defects
Fig 6.1 shows (a) synthesis procedure and growth mechanism of CdS nanorods and nanoflowers with varying solvothermal time. SEM images of (b) Bare CdS NRs, (c) CQD@CdS12NFs, (d) CQD@CdS24NFs. TEM images and d-spacing for (e, f) CQD@CdS12NFs and (g, h) CQD@CdS24NFs. Elemental mapping of (i-l) CQD@CdS12NFs....................................................................................................................77
Fig 6.2 shows TEM image confirming the presence of CQD in CQD@CdS12NFs (a) and individual CQD samples (b) ……………………………………………………...…………..78
Fig 6.3 shows the SEM elemental presence (a) of Cd, S, C, O in CQD@CdS24NFs sample, EDAX elemental mapping (b-e), EDAX spectrum of Bare CdS NRs (f), CQD@CdS12NFs (g) and CQD@CdS24NFs (h) …………………………………………………………………....79
Fig 6.4 shows diffraction pattern (a), Raman spectra (b), FTIR spectra (c), surface area for all CdS samples……………………………………………………………….............................81
Fig 6.5 shows XPS full survey scan (a), Cd 3d spectrum (b), C 1s spectrum (c) and S 2p spectrum (d) for all CdS samples……………………………………………………..………86
Fig 6.6 shows absorbance spectra (a), photoluminescence emission spectra (b), energy bandgap Tau-plot (c) and Mott-Schottky plot (d) for all CdS samples…………………………………88
Fig 6.7 shows Transient Responsive photoluminescence Decay spectra (a), electro impedance spectra (b), electron paramagnetic spectra (c) and transient photocurrent for all CdS samples.93
Fig 6.8 Nyquist equivalent circuit plot for EIS spectroscopy…………………...…………….93
Fig 6.9 shows Rhodamine B absorbance decay profile for (a) Bare CdS NRs, (b) CQD@CdS12NFs, (c) CQD@CdS24NFs. Concentration (d) decay profile as a function of time and (e) linear fit obtained for pseudo-second order kinetic model and (f) real-time color change of dye for all CdS samples. Variation in (g, h) growth rate, (i) length of roots and shoots in Vigna Radiata for a period of 72h using different water samples…………………………..95
Fig 6.10 shows (a) time dependent photocatalytic H2 evolution, (b) stability test for H2 evolution, (c) average hydrogen production rates and (d) hydrogen production rate in absence of sacrificial reagents for all CdS samples……………………………………………….……99
Fig 6.11 shows H2 generation of CQD@CdS12NFs with varying amount of photocatalyst...100
Fig 6.12 shows change in morphology of all CdS based photocatalyst (a) before, (b) after 10 hours and (c) after 30 hours of hydrogen generation………………………………………...101
Fig 6.13 shows the band alignment positions of CdS nanoflowers and nanoclusters………..102
Fig 6.14 shows the (a) DFT calculated DOS band for Bare CdS and carbon loaded with Svacancy CdS in (002) facet orientation. (b) band structure positions of different CdS morphology photocatalysts. (c) possible mechanism for photocatalytic hydrogen generation…………....103








List of Tables
Chapter 1: Visible Light Responsive Photocatalysis
Table 1.1 shows the advantages and disadvantages of various synthesis methods……………14
Chapter 5 Synthesis of CQDs loaded CdS nanospheres
Table 5.1 shows the structural parameters crystallite size, average strain, and dislocation density of synthesized CdS samples…………………………………………………….….....50
Table 5.2 shows the Bandgap and Size of synthesized CdS samples……………………….…53
Table 5.3 shows Functional groups of PVP@CdS, CQD@CdS and N-CQD@CdS samples with respective to their wavenumber from FTIR spectroscopy………………………..……...55
Table 5.4 shows atomic percentage of Cadmium and Sulphur and their atomic ratio in all samples……………………………………………………………………..………………...61
Table 5.5 shows the band structure parameters such as Ef, Eg, ECB and EVB of CdS samples….70
Chapter 6: Tailoring properties: Effects of morphology variation and crystal defects
Table 6.1 shows the EDAX atomic % of Cd, S and intensity ratio for all CdS samples……….80
Table 6.2 shows intensity ratios for the planes (200) and (100), crystallite size, dislocation density and average strain for all CdS samples……………………………………………..…83
Table 6.3 shows the surface area, average pore width and pore volume for all CdS samples..85
Table 6.4 shows XPS atomic % of Cd, S, C and O for all CdS samples………………………87
Table 6.5 shows the energy bandgap, flat band potential, conduction band and valance band for all CdS samples………………………………………………………………………..….90
Table 6.6 shows kinetic analysis of emission decay for the CdS samples…………………….91
Table 6.7 shows the Nyquist plot fitting parameters for all CdS samples…………………….94
Table 6.8 Comparison of RhB dye degradation obtained in this study with literatures96…….98
Table 6.9 comparison of photocatalytic hydrogen generation obtained in this study with literatures……………………………………………………………………………………104

References
[1] J.G.J. Olivier, J. a. H.W. Peters, G. Janssens-Maenhout, Trends in global CO2 emissions. 2012 Report, (2012). https://doi.org/10.2788/33777.
[2] W.-T. Tsai, C.-H. Tsai, Interactive analysis of green building materials promotion with relevance to energy consumption and greenhouse gas emissions from Taiwan’s building sector, Energy and Buildings. 261 (2022) 111959. https://doi.org/10.1016/j.enbuild.2022.111959.
[3] T. Kober, H.-W. Schiffer, M. Densing, E. Panos, Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019, Energy Strategy Reviews. 31 (2020) 100523. https://doi.org/10.1016/j.esr.2020.100523.
[4] C.-S. Lin, F.-M. Liou, C.-P. Huang, Grey forecasting model for CO2 emissions: A Taiwan study, Applied Energy. 88 (2011) 3816–3820. https://doi.org/10.1016/j.apenergy.2011.05.013.
[5] Y.-H. Wu, C.-H. Liu, M.-L. Hung, T.-Y. Liu, T. Masui, Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models, Energy Policy. 132 (2019) 1241–1255. https://doi.org/10.1016/j.enpol.2019.06.043.
[6] C.-T. Chang, C.-H. Yang, T.-P. Lin, Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan, Journal of Cleaner Production. 230 (2019) 1241–1255. https://doi.org/10.1016/j.jclepro.2019.05.006.
[7] Dual-Function Materials for CO2 Capture and Conversion: A Review | Industrial & Engineering Chemistry Research, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c02218 (accessed December 22, 2023).
[8] I. Sullivan, A. Goryachev, I.A. Digdaya, X. Li, H.A. Atwater, D.A. Vermaas, C. Xiang, Coupling electrochemical CO2 conversion with CO2 capture, Nat Catal. 4 (2021) 952–958. https://doi.org/10.1038/s41929-021-00699-7.
[9] S.R. Chia, K.W. Chew, H.Y. Leong, S.-H. Ho, H.S.H. Munawaroh, P.L. Show, CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges, Chemical Engineering Journal. 425 (2021) 131436. https://doi.org/10.1016/j.cej.2021.131436.
[10] F. Nocito, A. Dibenedetto, Atmospheric CO2 mitigation technologies: carbon capture utilization and storage, Current Opinion in Green and Sustainable Chemistry. 21 (2020) 34–43. https://doi.org/10.1016/j.cogsc.2019.10.002.
[11] H. Stančin, H. Mikulčić, X. Wang, N. Duić, A review on alternative fuels in future energy system, Renewable and Sustainable Energy Reviews. 128 (2020) 109927. https://doi.org/10.1016/j.rser.2020.109927.
[12] P. Capros, G. Zazias, S. Evangelopoulou, M. Kannavou, T. Fotiou, P. Siskos, A. De Vita, K. Sakellaris, Energy-system modelling of the EU strategy towards climate-neutrality, Energy Policy. 134 (2019) 110960. https://doi.org/10.1016/j.enpol.2019.110960.
[13] L. Li, B. Wang, K. Jiao, M. Ni, Q. Du, Y. Liu, B. Li, G. Ling, C. Wang, Comparative techno-economic analysis of large-scale renewable energy storage technologies, Energy and AI. 14 (2023) 100282. https://doi.org/10.1016/j.egyai.2023.100282.
[14] M. Jeuland, M. McClatchey, S.R. Patil, S.K. Pattanayak, C.M. Poulos, J.-C. Yang, Do Decentralized Community Treatment Plants Provide Clean Water? Evidence from Rural Andhra Pradesh, India, Land Economics. 97 (2021) 345–371. https://doi.org/10.3368/le.97.2.345.
[15] P. Krzeminski, M.C. Tomei, P. Karaolia, A. Langenhoff, C.M.R. Almeida, E. Felis, F. Gritten, H.R. Andersen, T. Fernandes, C.M. Manaia, L. Rizzo, D. Fatta-Kassinos, Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review, Science of The Total Environment. 648 (2019) 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130.
[16] S. Raju, M. Carbery, A. Kuttykattil, K. Senthirajah, A. Lundmark, Z. Rogers, S. Scb, G. Evans, T. Palanisami, Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant, Water Research. 173 (2020) 115549. https://doi.org/10.1016/j.watres.2020.115549.
[17] X. Liu, Z. Chen, W. Du, P. Liu, L. Zhang, F. Shi, Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption, Journal of Environmental Management. 311 (2022) 114775. https://doi.org/10.1016/j.jenvman.2022.114775.
[18] M. Han, H. Wang, W. Jin, W. Chu, Z. Xu, The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation, Journal of Environmental Sciences. 128 (2023) 181–202. https://doi.org/10.1016/j.jes.2022.07.037.
[19] Y. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N. Ren, S.-H. Ho, Advanced oxidation processes for water disinfection: Features, mechanisms and prospects, Chemical Engineering Journal. 409 (2021) 128207. https://doi.org/10.1016/j.cej.2020.128207.
[20] J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, Chemical Engineering Journal. 401 (2020) 126158. https://doi.org/10.1016/j.cej.2020.126158.
[21] A. Saravanan, V.C. Deivayanai, P.S. Kumar, G. Rangasamy, R.V. Hemavathy, T. Harshana, N. Gayathri, K. Alagumalai, A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook, Chemosphere. 308 (2022) 136524. https://doi.org/10.1016/j.chemosphere.2022.136524.
[22] Transitional metal chalcogenide nanostructures for remediation and energy: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-021-01269-w (accessed December 22, 2023).
[23] P.V. Kamat, K. Sivula, Celebrating 50 Years of Photocatalytic Hydrogen Generation, ACS Energy Lett. 7 (2022) 3149–3150. https://doi.org/10.1021/acsenergylett.2c01889.
[24] B. Liu, H. Wu, I.P. Parkin, New Insights into the Fundamental Principle of Semiconductor Photocatalysis, ACS Omega. 5 (2020) 14847–14856. https://doi.org/10.1021/acsomega.0c02145.
[25] D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review, Environmental Nanotechnology, Monitoring & Management. 12 (2019) 100255. https://doi.org/10.1016/j.enmm.2019.100255.
[26] C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications, Journal of Alloys and Compounds. 828 (2020) 154281. https://doi.org/10.1016/j.jallcom.2020.154281.
[27] S. Zhong, Y. Xi, S. Wu, Q. Liu, L. Zhao, S. Bai, Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis, Journal of Materials Chemistry A. 8 (2020) 14863–14894. https://doi.org/10.1039/D0TA04977H.
[28] Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity, ACS Catal. 3 (2013) 882–889. https://doi.org/10.1021/cs4000975.
[29] F. Costantino, P.V. Kamat, Do Sacrificial Donors Donate H2 in Photocatalysis?, ACS Energy Lett. 7 (2022) 242–246. https://doi.org/10.1021/acsenergylett.1c02487.
[30] J. Zhang, Y. Lei, S. Cao, W. Hu, L. Piao, X. Chen, Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles, Nano Res. 15 (2022) 2013–2022. https://doi.org/10.1007/s12274-021-3982-y.
[31] N.S. Gultom, H. Abdullah, D.-H. Kuo, Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn(O,S) photocatalyst, International Journal of Hydrogen Energy. 44 (2019) 29516–29528. https://doi.org/10.1016/j.ijhydene.2019.08.066.
[32] Y. Jiang, L. Mao, J. Shi, B. Zheng, X. Guan, F. Liu, Effects of mixed sacrificial reagents on hydrogen evolution over typical photocatalysts, JPE. 10 (2019) 023503. https://doi.org/10.1117/1.JPE.10.023503.
[33] M. Ismael, Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review, Fuel. 303 (2021) 121207. https://doi.org/10.1016/j.fuel.2021.121207.
[34] H. Enzweiler, P.H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M.H.N. Olsen Scaliante, N.R.C. Fernandes, Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting, Journal of Photochemistry and Photobiology A: Chemistry. 388 (2020) 112051. https://doi.org/10.1016/j.jphotochem.2019.112051.
[35] T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature. 286 (1980) 474–476. https://doi.org/10.1038/286474a0.
[36] L. Lan, H. Daly, R. Sung, F. Tuna, N. Skillen, P.K.J. Robertson, C. Hardacre, X. Fan, Mechanistic Study of Glucose Photoreforming over TiO2-Based Catalysts for H2 Production, ACS Catal. 13 (2023) 8574–8587. https://doi.org/10.1021/acscatal.3c00858.
[37] D. Sebastian, A. Pallikkara, H. Bhatt, H.N. Ghosh, K. Ramakrishnan, Unravelling the Surface-State Assisted Ultrafast Charge Transfer Dynamics of Graphene Quantum Dot-Based Nanohybrids via Transient Absorption Spectroscopy, J. Phys. Chem. C. 126 (2022) 11182–11192. https://doi.org/10.1021/acs.jpcc.2c02170.
[38] H. Ribeiro, M.C. Schnitzler, W.M. da Silva, A.P. Santos, Purification of carbon nanotubes produced by the electric arc-discharge method, Surfaces and Interfaces. 26 (2021) 101389. https://doi.org/10.1016/j.surfin.2021.101389.
[39] X. Wang, Y. Feng, P. Dong, J. Huang, A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application, Frontiers in Chemistry. 7 (2019). https://www.frontiersin.org/articles/10.3389/fchem.2019.00671 (accessed December 22, 2023).
[40] S.D. Dsouza, M. Buerkle, P. Brunet, C. Maddi, D.B. Padmanaban, A. Morelli, A.F. Payam, P. Maguire, D. Mariotti, V. Svrcek, The importance of surface states in N-doped carbon quantum dots, Carbon. 183 (2021) 1–11. https://doi.org/10.1016/j.carbon.2021.06.088.
[41] O.E. Semonin, J.M. Luther, M.C. Beard, Quantum dots for next-generation photovoltaics, Materials Today. 15 (2012) 508–515. https://doi.org/10.1016/S1369-7021(12)70220-1.
[42] A. Roberge, J.H. Dunlap, F. Ahmed, A.B. Greytak, Size-Dependent PbS Quantum Dot Surface Chemistry Investigated via Gel Permeation Chromatography, Chem. Mater. 32 (2020) 6588–6594. https://doi.org/10.1021/acs.chemmater.0c02024.
[43] D.R. McMillin, Interatomic Repulsion and the Pauli Principle, J. Chem. Educ. 98 (2021) 2912–2918. https://doi.org/10.1021/acs.jchemed.1c00326.
[44] Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review, Energy Storage Materials. 26 (2020) 349–370. https://doi.org/10.1016/j.ensm.2019.11.006.
[45] J. Shi, J. Zhang, Z. Cui, S. Chu, Y. Wang, Z. Zou, In situ growth of MOF-derived sulfur vacancy-rich CdS nanoparticles on 2D polymers for highly efficient photocatalytic hydrogen generation, Dalton Transactions. 51 (2022) 5841–5858. https://doi.org/10.1039/D1DT04188F.
[46] P.M. Gharat, J.M. Chethodil, A.P. Srivastava, P.K. Praseetha, H. Pal, S.D. Choudhury, An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties, Photochem Photobiol Sci. 18 (2019) 110–119. https://doi.org/10.1039/c8pp00373d.
[47] J.D. Stachowska, A. Murphy, C. Mellor, D. Fernandes, E.N. Gibbons, M.J. Krysmann, A. Kelarakis, E. Burgaz, J. Moore, S.G. Yeates, A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea, Sci Rep. 11 (2021) 10554. https://doi.org/10.1038/s41598-021-89984-w.
[48] F. Limosani, E.M. Bauer, D. Cecchetti, S. Biagioni, V. Orlando, R. Pizzoferrato, P. Prosposito, M. Carbone, Top-Down N-Doped Carbon Quantum Dots for Multiple Purposes: Heavy Metal Detection and Intracellular Fluorescence, Nanomaterials. 11 (2021) 2249. https://doi.org/10.3390/nano11092249.
[49] A.S. Rasal, S. Yadav, A. Yadav, A.A. Kashale, S.T. Manjunatha, A. Altaee, J.-Y. Chang, Carbon Quantum Dots for Energy Applications: A Review, ACS Appl. Nano Mater. 4 (2021) 6515–6541. https://doi.org/10.1021/acsanm.1c01372.
[50] D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy, J. Phys. Chem. Lett. 12 (2021) 8939–8946. https://doi.org/10.1021/acs.jpclett.1c02475.
[51] L. Joseph Desmond, A. N. Phan, P. Gentile, Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy, Environmental Science: Nano. 8 (2021) 848–862. https://doi.org/10.1039/D1EN00017A.
[52] Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On–Off Metal Ions Nanosensing | ACS Sustainable Chemistry & Engineering, (n.d.). https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c08594 (accessed December 23, 2023).
[53] M.R. Hasan, N. Saha, T. Quaid, M.T. Reza, Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors, Energies. 14 (2021) 986. https://doi.org/10.3390/en14040986.
[54] C. Michelin, N. Hoffmann, Photosensitization and Photocatalysis—Perspectives in Organic Synthesis, ACS Catal. 8 (2018) 12046–12055. https://doi.org/10.1021/acscatal.8b03050.
[55] F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores, Nano Lett. 17 (2017) 7710–7716. https://doi.org/10.1021/acs.nanolett.7b03863.
[56] C.J. Reckmeier, J. Schneider, Y. Xiong, J. Häusler, P. Kasák, W. Schnick, A.L. Rogach, Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots, Chem. Mater. 29 (2017) 10352–10361. https://doi.org/10.1021/acs.chemmater.7b03344.
[57] Organic Photoredox Catalysis | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.chemrev.6b00057 (accessed December 18, 2023).
[58] Y. Zhang, T.S. Lee, J.L. Petersen, C. Milsmann, A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer, J. Am. Chem. Soc. 140 (2018) 5934–5947. https://doi.org/10.1021/jacs.8b00742.
[59] V. Strauss, J.T. Margraf, K. Dirian, Z. Syrgiannis, M. Prato, C. Wessendorf, A. Hirsch, T. Clark, D.M. Guldi, Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides, Angewandte Chemie International Edition. 54 (2015) 8292–8297. https://doi.org/10.1002/anie.201502482.
[60] F. Arcudi, V. Strauss, L. Đorđević, A. Cadranel, D.M. Guldi, M. Prato, Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction, Angewandte Chemie International Edition. 56 (2017) 12097–12101. https://doi.org/10.1002/anie.201704544.
[61] I. Srivastava, J.S. Khamo, S. Pandit, P. Fathi, X. Huang, A. Cao, R.T. Haasch, S. Nie, K. Zhang, D. Pan, Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk-State and Single-Particle Level, Advanced Functional Materials. 29 (2019) 1902466. https://doi.org/10.1002/adfm.201902466.
[62] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications, Nano Today. 19 (2018) 201–218. https://doi.org/10.1016/j.nantod.2018.02.008.
[63] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface Functionalized Carbogenic Quantum Dots, Small. 4 (2008) 455–458. https://doi.org/10.1002/smll.200700578.
[64] A. Tayyebi, O. Akhavan, B.-K. Lee, M. Outokesh, Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues, Carbon. 130 (2018) 267–272. https://doi.org/10.1016/j.carbon.2017.12.057.
[65] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions, Anal. Chem. 84 (2012) 6220–6224. https://doi.org/10.1021/ac3012126.
[66] Y. Mao, Y. Bao, D. Han, F. Li, L. Niu, Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing, Biosensors and Bioelectronics. 38 (2012) 55–60. https://doi.org/10.1016/j.bios.2012.04.043.
[67] R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions, Biosensors and Bioelectronics. 55 (2014) 83–90. https://doi.org/10.1016/j.bios.2013.11.074.
[68] Y.-Q. Zhang, D.-K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.-L. Hong, Q.-X. Yan, K. Yu, S.-M. Huang, One-pot synthesis of N-doped carbon dots with tunable luminescence properties, Journal of Materials Chemistry. 22 (2012) 16714–16718. https://doi.org/10.1039/C2JM32973E.
[69] F. Qian, X. Li, L. Tang, S.K. Lai, C. Lu, S.P. Lau, Potassium doping: Tuning the optical properties of graphene quantum dots, AIP Advances. 6 (2016) 075116. https://doi.org/10.1063/1.4959906.
[70] X. Ren, J. Liu, J. Ren, F. Tang, X. Meng, One-pot synthesis of active copper-containing carbon dots with laccase-like activities, Nanoscale. 7 (2015) 19641–19646. https://doi.org/10.1039/C5NR04685H.
[71] Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration, Nanoscale. 8 (2016) 17919–17927. https://doi.org/10.1039/C6NR05434J.
[72] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, Journal of Materials Chemistry A. 6 (2018) 11606–11630. https://doi.org/10.1039/C8TA00671G.
[73] D. Lang, F. Liu, G. Qiu, X. Feng, Q. Xiang, Synthesis and Visible-Light Photocatalytic Performance of Cadmium Sulfide and Oxide Hexagonal Nanoplates, ChemPlusChem. 79 (2014) 1726–1732. https://doi.org/10.1002/cplu.201402220.
[74] R. Sasikala, A.P. Gaikwad, V. Sudarsan, N. Gupta, S.R. Bharadwaj, Cubic phase indium doped cadmium sulfide dispersed on zinc oxide: Enhanced photocatalytic activity for hydrogen generation from water, Applied Catalysis A: General. 464–465 (2013) 149–155. https://doi.org/10.1016/j.apcata.2013.05.037.
[75] Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-020-01066-x (accessed December 24, 2023).
[76] J. Kundu, S. Khilari, D. Pradhan, Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures, ACS Appl. Mater. Interfaces. 9 (2017) 9669–9680. https://doi.org/10.1021/acsami.6b16456.
[77] S.S. Arbuj, S.R. Bhalerao, S.B. Rane, U.P. Mulik, D.P. Amalnerkar, Solvothermal Synthesis of One Dimensional Copper Doped Cadmium Sulphide Nanorods and Their Photocatalytic Performance, Journal of Nanoengineering and Nanomanufacturing. 3 (2013) 107–113. https://doi.org/10.1166/jnan.2013.1123.
[78] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073.
[79] S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, A Facile Template-Free Approach for the Large-Scale Solid-Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance, Small. 7 (2011) 957–964. https://doi.org/10.1002/smll.201002130.
[80] H. Yu, W. Zhong, X. Huang, P. Wang, J. Yu, Suspensible Cubic-Phase CdS Nanocrystal Photocatalyst: Facile Synthesis and Highly Efficient H2-Evolution Performance in a Sulfur-Rich System, ACS Sustainable Chem. Eng. 6 (2018) 5513–5523. https://doi.org/10.1021/acssuschemeng.8b00398.
[81] K.C. Wilson, M. Basheer Ahamed, Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition, Applied Surface Science. 361 (2016) 277–282. https://doi.org/10.1016/j.apsusc.2015.11.184.
[82] L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys. 13 (2011) 8915–8923. https://doi.org/10.1039/C1CP20079H.
[83] Quantum confinement in Si and Ge nanostructures: Theory and experiment | Applied Physics Reviews | AIP Publishing, (n.d.). https://pubs.aip.org/aip/apr/article/1/1/011302/123949/Quantum-confinement-in-Si-and-Ge-nanostructures (accessed December 24, 2023).
[84] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B. 46 (1992) 15578–15581. https://doi.org/10.1103/PhysRevB.46.15578.
[85] M.S. Hybertsen, Absorption and emission of light in nanoscale silicon structures, Phys. Rev. Lett. 72 (1994) 1514–1517. https://doi.org/10.1103/PhysRevLett.72.1514.
[86] A. Wu, Q. Song, H. Liu, Oxygen atom adsorbed on the sulphur vacancy of monolayer MoS2: A promising method for the passivation of the vacancy defect, Computational and Theoretical Chemistry. 1187 (2020) 112906. https://doi.org/10.1016/j.comptc.2020.112906.
[87] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nature Mater. 15 (2016) 48–53. https://doi.org/10.1038/nmat4465.
[88] K. Sharma, A. Kumar, T. Ahamad, Q.V. Le, P. Raizada, A. Singh, L.H. Nguyen, S. Thakur, V.-H. Nguyen, P. Singh, Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review, Journal of Materials Science & Technology. 152 (2023) 50–64. https://doi.org/10.1016/j.jmst.2022.11.053.
[89] S.M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, D. Beljonne, Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies, J. Phys. Chem. C. 124 (2020) 15076–15084. https://doi.org/10.1021/acs.jpcc.0c04203.
[90] Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2, J. Phys.: Condens. Matter. 30 (2018) 125302. https://doi.org/10.1088/1361-648X/aaad3b.
[91] T. Su, C. Men, L. Chen, B. Chu, X. Luo, H. Ji, J. Chen, Z. Qin, Sulfur Vacancy and Ti3C2Tx Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti3C2Tx/ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Evolution, Advanced Science. 9 (2022) 2103715. https://doi.org/10.1002/advs.202103715.
[92] Vacancy Engineering for Tuning Electron and Phonon Structures of Two‐Dimensional Materials - Liu - 2016 - Advanced Energy Materials - Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201600436 (accessed December 24, 2023).
[93] S. Lolla, X. Luo, Tuning the catalytic properties of monolayer MoS2 through doping and sulfur vacancies, Applied Surface Science. 507 (2020) 144892. https://doi.org/10.1016/j.apsusc.2019.144892.
[94] D. Le, T.B. Rawal, T.S. Rahman, Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application, J. Phys. Chem. C. 118 (2014) 5346–5351. https://doi.org/10.1021/jp411256g.
[95] K. Li, M. Han, R. Chen, S.-L. Li, S.-L. Xie, C. Mao, X. Bu, X.-L. Cao, L.-Z. Dong, P. Feng, Y.-Q. Lan, Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability, Advanced Materials. 28 (2016) 8906–8911. https://doi.org/10.1002/adma.201601047.
[96] Z. Ai, G. Zhao, Y. Zhong, Y. Shao, B. Huang, Y. Wu, X. Hao, Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation, Applied Catalysis B: Environmental. 221 (2018) 179–186. https://doi.org/10.1016/j.apcatb.2017.09.002.
[97] Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li, Y. Zhao, Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution, Angewandte Chemie. 130 (2018) 5867–5873. https://doi.org/10.1002/ange.201802014.
[98] S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review, Journal of Cleaner Production. 228 (2019) 755–769. https://doi.org/10.1016/j.jclepro.2019.04.292.
[99] Y. Lei, C. Yang, J. Hou, F. Wang, S. Min, X. Ma, Z. Jin, J. Xu, G. Lu, K.-W. Huang, Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots, Applied Catalysis B: Environmental. 216 (2017) 59–69. https://doi.org/10.1016/j.apcatb.2017.05.063.
[100] J. Guo, M. Guo, D. Jia, X. Song, F. Tong, CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property, Chemical Physics Letters. 659 (2016) 66–69. https://doi.org/10.1016/j.cplett.2016.07.001.
[101] A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst. 140 (2015) 4260–4269. https://doi.org/10.1039/C5AN00454C.
[102] Y. Pei, R. Pei, X. Liang, Y. Wang, L. Liu, H. Chen, J. Liang, CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process, Sci Rep. 6 (2016) 21551. https://doi.org/10.1038/srep21551.
[103] C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting, Applied Catalysis B: Environmental. 216 (2017) 114–121. https://doi.org/10.1016/j.apcatb.2017.05.049.
[104] S.P. Smrithi, N. Kottam, A. Narula, G.M. Madhu, R. Mohammed, R. Agilan, Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation, Journal of Colloid and Interface Science. 627 (2022) 956–968. https://doi.org/10.1016/j.jcis.2022.07.100.
[105] C. Tang, Y. Zhang, J. Han, Z. Tian, L. Chen, J. Chen, Monitoring graphene oxide’s efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels, Environmental Pollution. 262 (2020) 114246. https://doi.org/10.1016/j.envpol.2020.114246.
[106] C. Zhu, C. Liu, Y. Fu, J. Gao, H. Huang, Y. Liu, Z. Kang, Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater, Applied Catalysis B: Environmental. 242 (2019) 178–185. https://doi.org/10.1016/j.apcatb.2018.09.096.
[107] M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency, J. Am. Chem. Soc. 133 (2011) 16414–16417. https://doi.org/10.1021/ja207826q.
[108] C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet, M. Valcárcel, Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications. 0 (2009) 5214–5226. https://doi.org/10.1039/B904381K.
[109] M. Wang, Z. Wang, B. Zhang, W. Jiang, X. Bao, H. Cheng, Z. Zheng, P. Wang, Y. Liu, M.-H. Whangbo, Y. Li, Y. Dai, B. Huang, Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs, ACS Catal. 10 (2020) 13031–13039. https://doi.org/10.1021/acscatal.0c03671.
[110] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[111] R. Roshan, B.K. Nahak, D. Mahata, P. Yadav, S. Panda, S. Patra, S.S. Mahato, A. Tiwari, S. Mahata, Photocatalytic waste-to-renewable energy nexus using solar light induced quantum dots, Energy Conversion and Management. 283 (2023) 116917. https://doi.org/10.1016/j.enconman.2023.116917.
[112] A.-M. Alam, B.-Y. Park, Z. Khan Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chemistry. 17 (2015) 3791–3797. https://doi.org/10.1039/C5GC00686D.
[113] B.K. Nahak, R. Roshan, S.D. Roy, A. Patra, A. Sahu, S. Panda, S. Panda, S.S. Mahato, S. Mahata, Phase transformation driven enhanced photocatalytic activity of capped CeS2-CdS composites, J Mater Sci: Mater Electron. 33 (2022) 15191–15208. https://doi.org/10.1007/s10854-022-08438-9.
[114] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Solvothermal synthesis of activated carbon loaded CdS nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy, Chemical Physics Letters. 744 (2020) 137202. https://doi.org/10.1016/j.cplett.2020.137202.
[115] L. Wu, J.C. Yu, X. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, Journal of Molecular Catalysis A: Chemical. 244 (2006) 25–32. https://doi.org/10.1016/j.molcata.2005.08.047.
[116] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana, Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states, Physical Chemistry Chemical Physics. 17 (2015) 2850–2858. https://doi.org/10.1039/C4CP04761C.
[117] W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere. 218 (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175.
[118] Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, B. Li, Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB, Catalysis Today. 264 (2016) 250–256. https://doi.org/10.1016/j.cattod.2015.08.006.
[119] M. Moniruzzaman, J. Kim, Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application, Applied Surface Science. 552 (2021) 149372. https://doi.org/10.1016/j.apsusc.2021.149372.
[120] I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation, Applied Catalysis B: Environmental. 207 (2017) 412–423. https://doi.org/10.1016/j.apcatb.2017.02.028.
[121] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Crystal structures, morphological, optical, adsorption, kinetic and photocatalytic degradation studies of activated carbon loaded BiOBr nanoplates prepared by solvothermal method, Inorganic Chemistry Communications. 104 (2019) 134–144. https://doi.org/10.1016/j.inoche.2019.04.002.
[122] H. Ait Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, F. Guinneton, J.-R. Gavarri, Novel Lu-doped Bi2WO6 nanosheets: Synthesis, growth mechanisms and enhanced photocatalytic activity under UV-light irradiation, Ceramics International. 42 (2016) 8552–8558. https://doi.org/10.1016/j.ceramint.2016.02.082.
[123] M. Sachs, R.S. Sprick, D. Pearce, S.A.J. Hillman, A. Monti, A.A.Y. Guilbert, N.J. Brownbill, S. Dimitrov, X. Shi, F. Blanc, M.A. Zwijnenburg, J. Nelson, J.R. Durrant, A.I. Cooper, Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution, Nat Commun. 9 (2018) 4968. https://doi.org/10.1038/s41467-018-07420-6.
[124] W. Shi, F. Guo, M. Li, Y. Shi, Y. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Separation and Purification Technology. 212 (2019) 142–149. https://doi.org/10.1016/j.seppur.2018.11.028.
[125] N.N. Yunus, F. Hamzah, M.S. So’aib, J. Krishnan, Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2, IOP Conf. Ser.: Mater. Sci. Eng. 206 (2017) 012092. https://doi.org/10.1088/1757-899X/206/1/012092.
[126] Y. Tang, X. Hu, C. Liu, Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO 2 nanotube array for highly stable photocatalytic activity, Physical Chemistry Chemical Physics. 16 (2014) 25321–25329. https://doi.org/10.1039/C4CP04057K.
[127] J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Morphology-dependent photocatalytic H2-production activity of CdS, Applied Catalysis B: Environmental. 156–157 (2014) 184–191. https://doi.org/10.1016/j.apcatb.2014.03.013.
[128] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073.
[129] A. Hernández-Gordillo, S. Oros-Ruiz, R. Gómez, Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template, Journal of Colloid and Interface Science. 451 (2015) 40–45. https://doi.org/10.1016/j.jcis.2015.03.052.
[130] Y. Liu, Y. Ma, W. Liu, Y. Shang, A. Zhu, P. Tan, X. Xiong, J. Pan, Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy, Journal of Colloid and Interface Science. 513 (2018) 222–230. https://doi.org/10.1016/j.jcis.2017.11.030.
[131] Y. Liu, Y.-X. Yu, W.-D. Zhang, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance, Journal of Alloys and Compounds. 569 (2013) 102–110. https://doi.org/10.1016/j.jallcom.2013.03.202.
[132] S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials, Nano Energy. 53 (2018) 296–336. https://doi.org/10.1016/j.nanoen.2018.08.058.
[133] P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, Hexagonal Planar CdS Monolayer Sheet for Visible Light Photocatalysis, J. Phys. Chem. C. 120 (2016) 7052–7060. https://doi.org/10.1021/acs.jpcc.6b01622.
[134] R.R. Prabhu, M. Abdul Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bull Mater Sci. 31 (2008) 511–515. https://doi.org/10.1007/s12034-008-0080-7.
[135] K. Gong, D.F. Kelley, A.M. Kelley, Resonance Raman Spectroscopy and Electron–Phonon Coupling in Zinc Selenide Quantum Dots, J. Phys. Chem. C. 120 (2016) 29533–29539. https://doi.org/10.1021/acs.jpcc.6b12202.
[136] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[137] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[138] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
[139] Template-Free Hydrothermal Synthesis of Novel Three-Dimensional Dendritic CdS Nanoarchitectures | The Journal of Physical Chemistry C, (n.d.). https://pubs.acs.org/doi/full/10.1021/jp810155r (accessed August 21, 2023).
[140] Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S138589472030423X (accessed November 13, 2023).
[141] J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An, W. Cui, Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer, Journal of Colloid and Interface Science. 600 (2021) 138–149. https://doi.org/10.1016/j.jcis.2021.05.013.
[142] Z. Jin, Y. Liu, X. Hao, Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity, Journal of Colloid and Interface Science. 567 (2020) 357–368. https://doi.org/10.1016/j.jcis.2020.02.024.
[143] P. He, L. Zhang, L. Wu, X. Yang, T. Chen, Y. Li, X. Yang, L. Zhu, Q. Meng, T. Duan, Synergistic Effect of the Sulfur Vacancy and Schottky Heterojunction on Photocatalytic Uranium Immobilization: The Thermodynamics and Kinetics, Inorg. Chem. 61 (2022) 2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552.
[144] B. Chai, M. Xu, J. Yan, Z. Ren, Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres, Applied Surface Science. 430 (2018) 523–530. https://doi.org/10.1016/j.apsusc.2017.07.292.
[145] K. Sridharan, E. Jang, J.H. Park, J.-H. Kim, J.-H. Lee, T.J. Park, Silver Quantum Cluster (Ag9)-Grafted Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Generation and Dye Degradation, Chemistry – A European Journal. 21 (2015) 9126–9132. https://doi.org/10.1002/chem.201500163.
[146] X. Hao, Y. Hu, Z. Cui, J. Zhou, Y. Wang, Z. Zou, Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting, Applied Catalysis B: Environmental. 244 (2019) 694–703. https://doi.org/10.1016/j.apcatb.2018.12.006.
[147] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye, Chemical Engineering Journal. 169 (2011) 126–134. https://doi.org/10.1016/j.cej.2011.02.066.
[148] H. Ullah, E. Viglašová, M. Galamboš, Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods, Processes. 9 (2021) 263. https://doi.org/10.3390/pr9020263.
[149] R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire, Chemical Physics Letters. 684 (2017) 126–134. https://doi.org/10.1016/j.cplett.2017.06.021.
[150] X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt(IV) under Visible Light Irradiation:  N-Deethylation, Chromophore Cleavage, and Mineralization, J. Phys. Chem. B. 110 (2006) 26012–26018. https://doi.org/10.1021/jp063588q.
[151] K. Hu, C. Ming, Y. Liu, C. Zheng, S. Zhang, D. Wang, W. Zhao, F. Huang, Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity, Chinese Chemical Letters. 31 (2020) 2809–2813. https://doi.org/10.1016/j.cclet.2020.07.052.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *