|
[1] W. Jahnen-Dechent, M. Ketteler, Magnesium basics, Clinical kidney journal, 5 (2012) i3-i14. [2] M. Gupta, A snapshot of remarkable potential of mg-based materials as implants, Material Science and Engineering International Journal, 2 (2018) 30-33. [3] B. Istrate, C. Munteanu, I.-V. Antoniac, Ș.-C. Lupescu, Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants, Crystals, 12 (2022) 1468. [4] H. Tapiero, K.D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins, Biomedicine & Pharmacotherapy, 57 (2003) 399-411. [5] S. Cai, T. Lei, N. Li, F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys, Materials Science and Engineering: C, 32 (2012) 2570-2577. [6] J.Z. Ilich, J.E. Kerstetter, Nutrition in bone health revisited: a story beyond calcium, Journal of the American college of nutrition, 19 (2000) 715-737. [7] D.R. Sumner, J.O. GALANTE, Determinants of stress shielding: design versus materials versus interface, Clinical Orthopaedics and Related Research (1976-2007), 274 (1992) 202-212. [8] F. Theiss, D. Apelt, B. Brand, A. Kutter, K. Zlinszky, M. Bohner, S. Matter, C. Frei, J.A. Auer, B. Von Rechenberg, Biocompatibility and resorption of a brushite calcium phosphate cement, Biomaterials, 26 (2005) 4383-4394. [9] G. Kwon, D. Furgeson, Biodegradable polymers for drug delivery systems, in: Biomedical polymers, Elsevier, 2007, pp. 83-110. [10] J.Y. Rho, R.B. Ashman, C.H. Turner, Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, Journal of biomechanics, 26 (1993) 111-119. [11] Y. Yang, C. He, E. Dianyu, W. Yang, F. Qi, D. Xie, L. Shen, S. Peng, C. Shuai, Mg bone implant: Features, developments and perspectives, Materials & Design, 185 (2020) 108259. [12] J. Yang, G.L. Koons, G. Cheng, L. Zhao, A.G. Mikos, F. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomedical Materials, 13 (2018) 022001. [13] F. Witte, The history of biodegradable magnesium implants: a review, Acta biomaterialia, 6 (2010) 1680-1692. [14] E.C. Huse, A new ligature?, 1878. [15] E. Payr, Beitrage zur Technik der Blutgesfass und Nervennaht nebst Mittheilungen die Verwendung eines Resorbierharen Metalles in der Chirurgie, Arch. Klin. Chir., 62 (1900) 67-71. [16] A. Lambotte, L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse, Bull Mem Soc Nat Chir, 28 (1932) 1325-1334. [17] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials, 112 (2017) 287-302. [18] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557-3563. [19] P.C. Ferreira, K.d.A. Piai, A.M.M. Takayanagui, S.I. Segura-Muñoz, Aluminum as a risk factor for Alzheimer's disease, Revista latino-americana de enfermagem, 16 (2008) 151-157. [20] J. Walton, Aluminum involvement in the progression of Alzheimer's disease, Journal of Alzheimer's Disease, 35 (2013) 7-43. [21] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30 (2009) 484-498. [22] D.-s. Yin, E.-l. Zhang, S.-y. Zeng, Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy, Transactions of Nonferrous Metals Society of China, 18 (2008) 763-768. [23] G. Chandra, A. Pandey, Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: a review, Irbm, 43 (2022) 229-249. [24] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29 (2008) 1329-1344. [25] H.R.B. Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys, Materials & Design, 33 (2012) 88-97. [26] L. Wei, J. Li, Y. Zhang, H. Lai, Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2 Ca-0.1 Mn alloys, Materials Chemistry and Physics, 241 (2020) 122441. [27] Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, Journal of materials chemistry B, 2 (2014) 1912-1933. [28] G. Pagano, F. Aliberti, M. Guida, R. Oral, A. Siciliano, M. Trifuoggi, F. Tommasi, Rare earth elements in human and animal health: state of art and research priorities, Environmental research, 142 (2015) 215-220. [29] C. Xu, J. Wang, C. Chen, C. Wang, Y. Sun, S. Zhu, S. Guan, Initial micro-galvanic corrosion behavior between Mg2Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation, Journal of Magnesium and Alloys, (2021). [30] Y. Song, E.-H. Han, D. Shan, C.D. Yim, B.S. You, The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys, Corrosion science, 65 (2012) 322-330. [31] G. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corrosion science, 41 (1998) 249-273. [32] D. Mei, S.V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals–a critical review, Corrosion Science, 171 (2020) 108722. [33] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Advanced engineering materials, 1 (1999) 11-33. [34] G. Williams, H. Ap Llwyd Dafydd, R. Subramanian, H. McMurray, The influence of chloride ion concentration on passivity breakdown in magnesium, Corrosion, 73 (2017) 471-481. [35] G. Frankel, G. Thornton, S. Street, T. Rayment, D. Williams, A. Cook, A. Davenport, S. Gibbon, D. Engelberg, C. Örnek, Localised corrosion: general discussion, Faraday Discussions, 180 (2015) 381-414. [36] S. Johnston, Z. Shi, J. Venezuela, C. Wen, M.S. Dargusch, A. Atrens, Investigating Mg biocorrosion in vitro: lessons learned and recommendations, Jom, 71 (2019) 1406-1413. [37] M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M. Bilek, P.K. Chu, Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid, Corrosion Science, 91 (2015) 160-184. [38] S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta biomaterialia, 10 (2014) 2919-2934. [39] H. Oonishi, M. Yamamoto, H. Ishimaru, E. Tsuji, S. Kushitani, M. Aono, Y. Ukon, The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, The Journal of Bone & Joint Surgery British Volume, 71 (1989) 213-216. [40] D. Chen, N. Bertollo, A. Lau, N. Taki, T. Nishino, H. Mishima, H. Kawamura, W.R. Walsh, Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model, Journal of Orthopaedic Surgery and Research, 6 (2011) 1-8. [41] D. Mei, S.V. Lamaka, C. Feiler, M.L. Zheludkevich, The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8 Ca alloy: An overall perspective, Corrosion Science, 153 (2019) 258-271. [42] Y. Xin, T. Hu, P.K. Chu, Influence of test solutions on in vitro studies of biomedical magnesium alloys, Journal of The Electrochemical Society, 157 (2010) C238. [43] J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, G.J. Dias, Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100 (2012) 1134-1141. [44] A. Gnedenkov, D. Mei, S. Lamaka, S. Sinebryukhov, D. Mashtalyar, I. Vyaliy, M. Zheludkevich, S. Gnedenkov, Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium, Corrosion Science, 170 (2020) 108689. [45] B. Zhang, Y. Wang, L. Geng, Research on mg-zn-ca alloy as degradable biomaterial, biomaterials—Physics and chemistry, InTech, Croatia, (2011). [46] P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Scientific reports, 3 (2013) 2367. [47] M. Cihova, E. Martinelli, P. Schmutz, A. Myrissa, R. Schäublin, A.M. Weinberg, P. Uggowitzer, J.F. Löffler, The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys, Acta biomaterialia, 100 (2019) 398-414. [48] J. Fu, W. Du, K. Liu, X. Du, C. Zhao, H. Liang, A. Mansoor, S. Li, Z. Wang, Effect of the Ca2Mg6Zn3 Phase on the Corrosion Behavior of Biodegradable Mg-4.0 Zn-0.2 Mn-x Ca Alloys in Hank’s Solution, Materials, 15 (2022) 2079. [49] B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng, Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions, Materials Science and Engineering: C, 31 (2011) 1667-1673. [50] H. Bakhsheshi‐Rad, E. Hamzah, A. Fereidouni‐Lotfabadi, M. Daroonparvar, M. Yajid, M. Mezbahul‐Islam, M. Kasiri‐Asgarani, M. Medraj, Microstructure and bio‐corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Materials and Corrosion, 65 (2014) 1178-1187. [51] P.K. Bowen, J. Drelich, J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Advanced materials, 25 (2013) 2577-2582. [52] P.-W. Chu, E. Le Mire, E.A. Marquis, Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution, Corrosion Science, 128 (2017) 253-264. [53] A. Vinogradov, E. Merson, P. Myagkikh, M. Linderov, A. Brilevsky, D. Merson, Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System, Materials, 16 (2023) 1324. [54] C. Wang, L. Wu, F. Xue, R. Ma, I.-I.N. Etim, X. Hao, J. Dong, W. Ke, Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions, Journal of materials science & technology, 34 (2018) 1876-1884. [55] A.M.H. Ibrahim, M. Balog, P. Krizik, F. Novy, Y. Cetin, P. Svec Jr, O. Bajana, M. Drienovsky, Partially biodegradable Ti-based composites for biomedical applications subjected to intense and cyclic loading, Journal of Alloys and Compounds, 839 (2020) 155663. [56] S. Feliu Jr, Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges, Metals, 10 (2020) 775. [57] Y. Song, E.-H. Han, K. Dong, D. Shan, C.D. Yim, B.S. You, Study of the corrosion product films formed on the surface of Mg–xZn alloys in NaCl solution, Corrosion science, 88 (2014) 215-225. [58] A. Atrens, X. Chen, Z. Shi, Mg Corrosion—Recent Progress, Corrosion and Materials Degradation, 3 (2022) 566-597. [59] F. Cao, Z. Shi, G.-L. Song, M. Liu, A. Atrens, Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg (OH) 2 of as-cast and solution heat-treated binary Mg–X alloys: X= Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corrosion Science, 76 (2013) 60-97. [60] A. Atrens, Z. Shi, S.U. Mehreen, S. Johnston, G.-L. Song, X. Chen, F. Pan, Review of Mg alloy corrosion rates, Journal of Magnesium and Alloys, 8 (2020) 989-998. [61] N. Pulido-González, B. Torres, P. Rodrigo, N. Hort, J. Rams, Microstructural, mechanical and corrosion characterization of an as-cast Mg–3Zn–0.4 Ca alloy for biomedical applications, Journal of Magnesium and Alloys, 8 (2020) 510-522. [62] P.-W. Chu, E.A. Marquis, Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior, Corrosion Science, 101 (2015) 94-104. |