|
Alelaumi, S., Wang, H., Lu, H., & Yoon, S. W. (2020). A predictive abnormality detection model using ensemble learning in stencil printing process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(9), 1560-1568. Al-Refaie, A. (2009). Optimizing SMT performance using comparisons of efficiency between different systems technique in DEA. IEEE Transactions on Electronics Packaging Manufacturing, 32(4), 256-264. Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. In Journal of physics: conference series (Vol. 1142, p. 012012). IOP Publishing. Bonaccorso, G. (2017). Machine learning algorithms. Packt Publishing Ltd. Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big data & society, 3(1), 2053951715622512. Huang, C. Y., Shen, L. C., Greene, C., & Yang, C. C. (2021). Parameter Optimization of Pre-tin Printing Process of Wireless Communication Module. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(7), 1137-1147. Hu, X. (2018, September). Analysis of Materials and Processes Affecting SMT Printing Quality. In 4th Workshop on Advanced Research and Technology in Industry (WARTIA 2018) (pp. 39-45). Atlantis Press. Khader, N., & Yoon, S. W. (2018). Stencil printing process optimization to control solder paste volume transfer efficiency. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(9), 1686-1694. Khader, N., & Yoon, S. W. (2018). Online control of stencil printing parameters using reinforcement learning approach. Procedia Manufacturing, 17, 94-101.
Khan, A., Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal of advances in information technology, 1(1), 4-20. Li, M. H. C., Al-Refaie, A., & Yang, C. Y. (2008). DMAIC approach to improve the capability of SMT solder printing process. IEEE Transactions on Electronics Packaging Manufacturing, 31(2), 126-133. Mannan, S. H., Ekere, N. N., Ismail, I., & Currie, M. A. (1995). Flow processes in solder paste during stencil printing for SMT assembly. Journal of Materials Science: Materials in Electronics, 6, 34-42. Mannan, S. H., Ekere, N. N., Ismail, I., & Lo, E. K. (1994). Squeegee deformation study in the stencil printing of solder pastes. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(3), 470-476. Pan, J., Tonkay, G. L., Storer, R. H., Sallade, R. M., & Leandri, D. J. (2004). Critical variables of solder paste stencil printing for micro-BGA and fine-pitch QFP. IEEE Transactions on Electronics Packaging Manufacturing, 27(2), 125-132. Ramli, M. I. I., Mohd Salleh, M. A. A., Mohd Sobri, F. A., Narayanan, P., Sweatman, K., & Nogita, K. (2019). Relationship between free solder thicknesses to the solder ability of Sn–0.7 Cu–0.05 Ni solder coating during soldering. Journal of Materials Science: Materials in Electronics, 30, 3669-3677. Ray, S. (2019, February). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35-39). IEEE. Rusdi, M. S., Abdullah, M. Z., Chellvarajoo, S., Abdul Aziz, M. S., Abdullah, M. K., Rethinasamy, P., ... & Santhanasamy, D. G. (2019). Stencil printing process performance on various aperture size and optimization for lead-free solder paste. The International Journal of Advanced Manufacturing Technology, 102, 3369-3379. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3), 160. Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd international conference on computing for sustainable global development (INDIACom) (pp. 1310-1315). Ieee. Yang, T., Tsai, T. N., & Yeh, J. (2005). A neural network-based prediction model for fine pitch stencil-printing quality in surface mount assembly. Engineering Applications of Artificial Intelligence, 18(3), 335-341. 劉鋒,胡天英,陳俊霖, & 但晨. (2021). Independent Variable Selection of High-Dimensional Data in Cox Regression Model. Statistics and Application, 10(2), 183-192. NVIDIA,(2023/7).甚麼是XGBoost ?數據科學(NVIDIA術語表) https://www.nvidia.cn/glossary/data-science/xgboost/
|