|
1. Lau, W., et al., Development of a High Brightness Photo-injector for Light Source Research at NSRRC. Proc. of EPAC08, Genoa, Italy, 2008. 229. 2. Lee, A.-p., et al. The High Brightness Photo-injector for THz CUR/VUV FEL at NSRRC. in 10th Int. Particle Accelerator Conf.(IPAC'19), Melbourne, Australia, 19-24 May 2019. 2019. JACOW Publishing, Geneva, Switzerland. 3. Wangler, T.P., RF Linear accelerators. 2008: John Wiley & Sons. 4. Collin, R.E., Foundations for microwave engineering. 2007: John Wiley & Sons. 5. Cheng, D.K., Field and wave electromagnetics. 1989: Pearson Education India. 6. Nagle, D., E. Knapp, and B. Knapp, Coupled resonator model for standing wave accelerator tanks. Review of Scientific Instruments, 1967. 38(11): p. 1583-1587. 7. Lal, S., K. Pant, and S. Krishnagopal, A new two-step tuning procedure for a photocathode gun. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008. 592(3): p. 180-188. 8. Menzel, M. and H.K. Stokes, Users guide for the POISSON/SUPERFISH group of codes. 1987, Los Alamos National Lab.(LANL), Los Alamos, NM (United States). 9. Halbach, K., Superfish? A computer program for evaluation of RF cavities with cylindrical symmetry. 1976. 10. Billen, J.H. and L.M. Young. Poisson/superfish on pc compatibles. in Proceedings of International Conference on Particle Accelerators. 1993. IEEE. 11. Kim, K.-J., Rf and space-charge effects in laser-driven rf electron guns. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989. 275(2): p. 201-218. 12. Reiser, M., Theory and design of charged particle beams. 2008: John Wiley & Sons. 13. Rao, T. and D.H. Dowell, An engineering guide to photoinjectors. arXiv preprint arXiv:1403.7539, 2014. 14. Forbes, R.G., Field emission: New theory for the derivation of emission area from a Fowler–Nordheim plot. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999. 17(2): p. 526-533. 15. Fowler, R., Nordheim," Electron Emission in Intense Electric Fields. Proc. Roy. Soc. A, 1928. 119(781): p. 173-181. 16. Wang, J. and G. Loew, Field emission and rf breakdown in high-gradient room temperature linac structures. 1997, Stanford Univ., Stanford Linear Accelerator Center, CA (US). 17. Holder, D. and B. Muratori, Status of the photo injector test facility at DESY, Zeuthen site. 2010. 18. Han, J.-H., K. Flöttmann, and W. Hartung, Single-side electron multipacting at the photocathode in rf guns. Physical Review Special Topics-Accelerators and Beams, 2008. 11(1): p. 013501. 19. Shu, G., et al., Dark current studies of an L-band normal conducting RF gun. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. 1010: p. 165546. 20. DESIGN, S.R.G., THE SWISS FEL RF GUN: RF DESIGN AND THERMAL ANALYSIS. 21. Bettoni, S., et al. Dark current transport and collimation studies for SwissFEL. in Proc. 35th Int. Free-Electron Laser Conf., New York, NY, USA. 2013. 22. Bettoni, S., et al., Low energy dark current collimation system in single-pass linacs. Physical Review Accelerators and Beams, 2018. 21(2): p. 023401. 23. Qiang, J., et al., Three-dimensional quasistatic model for high brightness beam dynamics simulation. Physical Review Special Topics-Accelerators and Beams, 2006. 9(4): p. 044204. 24. Donkó, Z., et al., eduPIC: an introductory particle based code for radio-frequency plasma simulation. Plasma Sources Science and Technology, 2021. 30(9): p. 095017. 25. Qiang, J. and K. Hwang, Modeling of Dark Current Generation and Transport Using the IMPACT-T Code. 2016. |