帳號:guest(18.218.167.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃郁涵
作者(外文):Huang, Yu-Han
論文名稱(中文):基於文字探勘及視覺化技術之履歷分類輔助系統
論文名稱(外文):The Resume Classification Assisting System Based on Text Mining and Visualization Techniques
指導教授(中文):區國良
唐文華
指導教授(外文):Ou, Kuo-Liang
Tarng, Wern-Huar
口試委員(中文):陳嘉琳
吳思達
口試委員(外文):Chen, Chia-Lin
Wu, Szu-Ta
學位類別:碩士
校院名稱:國立清華大學
系所名稱:學習科學與科技研究所
學號:109291518
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:文字探勘履歷自然語言處理視覺化學歷職務
外文關鍵詞:text miningresumeNatural Language Processingvisualization tooleducationjob
相關次數:
  • 推薦推薦:0
  • 點閱點閱:157
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
履歷內容當中通常包含學歷、技能、人格特質等資訊。對企業組織而言,要從大量求職履歷當中找出符合職務條件的候選人,是一項耗時且高成本的工作。本論文透過所建立的字典,結合文字探勘、自然語言處理技術,對於履歷文本進行分析,取得履歷與職務之間的關聯程度值。接著,結合關聯程度、學歷及多元資訊,打造「視覺化人才履歷篩選互動面板」,提供一個能依據職務需求快速篩選履歷,並且具備個人履歷人格特質及技能關鍵字標示的視覺化人才篩選工具,輔助使用者能快速且有效地聚焦於合適的候選人。
Resumes usually contain degree, major, skills, and personality information. It is a time-consuming and high-cost task for organizations to find candidates who meet the job requirements from many resumes. This paper analyzes the resume text through the keywords, combined with text mining and Natural Language Processing technology. It calculates the value of the correlation degree between the resume and the position and combines education and diverse information, creating a "Visual Talent Resume Screening Interactive Panel" to provide a visualize tool that can quickly filter resumes based on job requirements. At the same time, the panel helping users focus on the keywords of resumes and find suitable candidates quickly and efficiently.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與限制 5
第二章 文獻探討 7
2.1 人格特質與人才甄選 7
2.2 人工智慧於人力資源領域的應用 10
2.2.1 招聘甄選 11
2.2.2 知識管理與培訓 12
2.2.3 人才發展與留才 13
2.3 文字探勘技術 15
2.3.1 文本特徵提取 15
2.3.2 自然語言處理 17
2.3.3 機器學習應用於文字探勘 20
第三章 研究方法 23
3.1 研究流程 23
3.2 建立資料集 25
3.3 JIEBA斷詞 30
3.4 人格特質與技能字典建立 31
3.4.1 人格特質字典建立 31
3.4.2 技能字典建立 32
3.5 學歷資料職務統計 32
3.6 職務履歷關聯分析 35
3.7 視覺化人才履歷篩選面板 39
第四章 研究分析及結果 41
4.1 基於學歷機率之職務分類工具 41
4.1.1 依據科系所之職務分類結果 42
4.1.2 綜合教育程度與科系所之職務分類結果 47
4.2 人格特質與技能標示 50
4.2.1 人格特質字典 50
4.2.2 技能字典 53
4.3 基於履歷文本之職務關聯程度分析工具 56
4.3.1 職務履歷關聯程度分析工具 57
4.3.2 綜合職務履歷關聯程度與學歷機率之分析工具 62
4.3.3 履歷人工分類與自動分類之效果比較 64
4.4 視覺化人才履歷篩選互動面板 66
4.4.1 視覺化人才履歷篩選互動面板說明 66
4.4.2 視覺化人才履歷篩選互動面板效果敘述性統計分析 71
第五章 研究結論與建議 77
5.1 研究結論 77
5.1.1 基於學歷機率之職務分類工具 77
5.1.2 人格特質與技能字典建立 78
5.1.3 基於履歷文本之職務關聯程度分析工具 79
5.1.4 視覺化人才履歷篩選互動面板 80
5.2 未來研究之建議 81
參考文獻 83
Ahmad, J., Ather, M., & Hussain, M. (2014). Impact of Big Five Personality Traits on Job Performance. Research Papers in Economics, 571-577.
Ahmed, N., Khan, S., & Latif, K. (2016, 19-21 Dec. 2016). Job Description Ontology. Paper presented at the 2016 International Conference on Frontiers of Information Technology (FIT).
Allport, G. W. (1937). Personality: a psychological interpretation. Oxford, England: Holt.
Allport, G. W. (1961). Pattern and growth in personality. Oxford, England: Holt, Reinhart & Winston.
Allport, G. W., & Odbert, H. S. (1936). Trait-names: A psycho-lexical study. Psychological Monographs, 47(1), i-171.
Antonacopoulou, E. P. (2000). Employee development through self‐development in three retail banks. Personnel Review, 29(4), 491-508.
Anyim, F. C., Ekwoaba, J. O. & Ideh, D. A. (2012). The role of human resource planning in recruitment and selection process. British Journal of Humanities and Social Sciences.
Baharudin, B., Lee, L. H., Khan, K., & Khan, A. (2010). A Review of Machine Learning Algorithms for Text-Documents Classification. Journal of Advances in Information Technology, 1.
Bao, L., Xing, Z., Xia, X., Lo, D., & Li, S. (2017, 20-21 May 2017). Who Will Leave the Company?: A Large-Scale Industry Study of Developer Turnover by Mining Monthly Work Report. Paper presented at the 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
Barrick, M. R., & Mount, M. K.(1991). The Big Five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 1-26.
Bijalwan, V., Kumari, P., Espada, J., & Semwal, V.(2014). KNN based Machine Learning Approach for Text and Document Mining. International Journal of Database Theory and Application, 7.
Blei, D., Ng, A., & Jordan, M.(2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
Buzko, I., Dyachenko, Y., Petrova, M., Nenkov, N., Tuleninova, D., & Koeva, K. (2016). Artificial Intelligence technologies in human resource development. Computer Modelling and New Technologies, 20, 26-29.
Cattell, R. B., Eber, H. W., & Tatsuoka, M. M. (1970). Handbook for the sixteen personality factor questionnaire (16 PF).
Cattell, R. B. (1943). The description of personality: basic traits resolved into clusters. The Journal of Abnormal and Social Psychology, 38(4), 476-506.
Cattell, R. B. (1945). The description of personality: principles and findings in a factor analysis. The American Journal of Psychology, 58, 69-90.
Çelik, D., & Elçi, A. (2013). An Ontology-Based Information Extraction Approach for Résumés, Berlin, Heidelberg.
Chou, Y. C., Chao, C. Y., & Yu, H. Y. (2019, 11-13 Feb. 2019). A Résumé Evaluation System Based on Text Mining. Paper presented at the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC).
Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information Science and Technology, 37(1), 51-89.
Cole, M., Feild, H. S., & Giles, W. F. (2003). What can we uncover about applicants based on their resumes? A field study. University of St.Gallen, 8.
Cole, M., Feild, H., & Stafford, J. (2005). Validity of Resumé Reviewers' Inferences Concerning Applicant Personality Based on Resumé Evaluation. International Journal of Selection and Assessment, 13, 321-324.
Dang, S. (2014). Text Mining : Techniques and its Application. International Journal of Enginerring & Technology Innnovation, 1, 22-25.
Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. A. (1990). Indexing by Latent Semantic Analysis. Journal of the Association for Information Science and Technology, 41, 391-407.
Ding, H. L., Yu, H. Z., Qi, K. Y., & Iop.(2019). Research on Semantic Prediction Analysis of Tibetan Text Based on Word2Vec. In 2018 International Symposium on Power Electronics and Control Engineering(Vol. 1187). Bristol: Iop Publishing Ltd.
Eckhardt, A., Laumer, S., Maier, C., & Weitzel, T. (2016). The effect of personality on IT personnel’s job-related attitudes: establishing a dispositional model of turnover intention across IT job types. Journal of Information Technology, 31(1), 48-66.
Ekwoaba, J. O., Ikeije, U., & Ufoma, N.(2015). The Impact of Recruitment and Selection Criteria on Organizational Performance. Global Journal of Human Resource Management.
Fan, C.-Y., Fan, P.-S., Chan, T.-Y., & Chang, S.-H. (2012). Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Systems with Applications, 39(10), 8844-8851.
Fan, Z.-P., Feng, Y., Sun, Y.-H., Feng, B., & You, T.-H. (2005). A Framework on Compound Knowledge Push System Oriented to Organizational Employees, Berlin, Heidelberg.
Galton, E(1884). Measurement of character. Fortnightly Review, 36, 179-185.
Geetha, R., & Reddy, D.(2018). Recruitment through artificial intelligence: A conceptual study. International Journal of Mechanical Engineering and Technology, 9, 63-70.
Godard, J., & Delaney, J. T. (2000). Reflections on the "High Performance" Paradigm's Implications for Industrial Relations as a Field. Industrial and Labor Relations Review, 53(3), 482-502.
Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4(1), 26-42.
Golestani, A., Masli, M., Shami, N. S., Jones, J., Menon, A., & Mondal, J. (2018, 17-20 Dec. 2018). Real-Time Prediction of Employee Engagement Using Social Media and Text Mining. Paper presented at the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA).
Hand, D. J., & Adams, N. M.(2014). Data Mining. In Wiley StatsRef: Statistics Reference Online(pp. 1-7).
Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments, 3rd ed. Odessa, FL, US: Psychological Assessment Resources.
Hu, K., Wu, H., Qi, K., Yu, J., Yang, S., Yu, T., . . . Liu, B. (2018). A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model. Scientometrics, 114(3), 1031-1068.
Iwai, R., Kawahara, D., Kumada, T., & Kurohashi, S. (2020). Development of a Japanese personality dictionary based on psychological methods. Paper presented at the Proceedings of the 12th Language Resources and Evaluation Conference.
Jantan, H., Hamdan, A. R., & Othman, Z. A. (2010). Human Talent Prediction in HRM using C4.5 Classification Algorithm. International Journal on Computer Science and Engineering, 2, 2526-2534.
Jatobá, M., Santos, J., Gutierriz, I., Moscon, D., Fernandes, P. O., & Teixeira, J. P. (2019). Evolution of Artificial Intelligence Research in Human Resources. Procedia Computer Science, 164, 137-142.
Javed, F., Luo, Q., McNair, M., Jacob, F., Zhao, M., & Kang, T. S. (2015, 30 March-2 April 2015). Carotene: A Job Title Classification System for the Online Recruitment Domain. Paper presented at the 2015 IEEE First International Conference on Big Data Computing Service and Applications.
Jia, Q. (2019). Winter 12-6-2018 A Conceptual Artificial Intelligence Application Framework in Human Resource Management.
Jung, Y., & Suh, Y. (2019). Mining the voice of employees: A text mining approach to identifying and analyzing job satisfaction factors from online employee reviews. Decision Support Systems, 123, 113074.
Kichuk, S. L., & Wiesner, W. H. (1997). The big five personality factors and team performance: implications for selecting successful product design teams. Journal of Engineering and Technology Management, 14(3), 195-221.
Kim, D., Seo, D., Cho, S., & Kang, P. (2019). Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec. Information Sciences, 477, 15-29.
Kuryło, P., Idzikowski, A., & Cyganiuk, J. (2019). Recruitment, selection and adaptation of staff in enterprise. System Safety: Human-Technical Facility-Environment, 1(1), 1020-1027.
Le, Q., & Mikolov, T.(2014). Distributed Representations of Sentences and Documents. 31st International Conference on Machine Learning, ICML 2014, 4.
Li, J., Huang, G. M., Fan, C. L., Sun, Z. L., & Zhu, H. T.(2019). Key word extraction for short text via word2vec, doc2vec, and textrank. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 1794-1805.
Liebowitz, J.(2001). Knowledge management and its link to artificial intelligence. Expert Systems with Applications, 20(1), 1-6.
Liu, C., Sheng, Y., Wei, Z., & Yang, Y.(2018, 24-27 Aug. 2018). Research of Text Classification Based on Improved TF-IDF Algorithm. Paper presented at the 2018 IEEE International Conference of Intelligent Robotic and Control Engineering(IRCE).
Liu, J., Huang, J., Wang, T., Xing, L., & He, R. (2021). A Data-Driven Analysis of Employee Development Based on Working Expertise. IEEE Transactions on Computational Social Systems, 8(2), 410-422.
Loebbecke, C., & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. The Journal of Strategic Information Systems, 24(3), 149-157.
Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of Literary Information. IBM Journal of Research and Development, 1(4), 309-317.
Lykourentzou, I., Antoniou, A., Naudet, Y., & Dow, S. P. (2016). Personality Matters: Balancing for Personality Types Leads to Better Outcomes for Crowd Teams. Paper presented at the Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, San Francisco, California, USA.
McCrae, R. R., & Costa Jr., P. T. (1989). Reinterpreting the Myers-Briggs Type Indicator From the Perspective of the Five-Factor Model of Personality. Journal of personality, 57(1), 17-40.
McFarland, L. A., & Ryan, A. M. (2006). Toward an Integrated Model of Applicant Faking Behavior1. Journal of Applied Social Psychology, 36(4), 979-1016.
Medelyan, O., & Witten, I. H. (2006). Thesaurus based automatic keyphrase indexing. Paper presented at the Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries.
Meng, L., Huang, R., & Gu, J.(2013). A review of semantic similarity measures in WordNet. International Journal of Hybrid Information Technology, 6.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.(2013). Distributed representations of words and phrases and their compositionality. Paper presented at the Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, Lake Tahoe, Nevada.
Miller, G. A., Beckwith, R., Fellbaum, C. D., Gross, D., & Miller, K. J. (1990). Introduction to WordNet: An On-line Lexical Database. International Journal of Lexicography, 3, 235-244.
Mischel, W., & Shoda, Y. (1995). A cognitive-affective system theory of personality: Reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychological Review, 102(2), 246-268.
Myers, I. B. (1962). The Myers-Briggs Type Indicator: Manual (1962). Palo Alto, CA, US: Consulting Psychologists Press.
Nawaz, N., & Gomes, A.(2019). Artificial Intelligence Chatbots are New Recruiters. International Journal of Advanced Computer Science and Applications, 10.
Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: Replicated factor structure in peer nomination personality ratings. The Journal of Abnormal and Social Psychology, 66(6), 574-583.
O'Neill, T. A., & Allen, N. J. (2011). Personality and the prediction of team performance. European Journal of Personality, 25(1), 31-42.
Oaya, Z. C. T., Ogbu, J. E., & Remilekun, G. (2017). Impact of Recruitment and Selection Strategy on Employee“ Performance: A Study of Three Selected Manufacturing Companies in Nigeria. International Journal of Management Science and Business Administration, 3, 32-43.
Rachman, G. H., Khodra, M. L., & Widyantoro, D. H. (2017, January 01, 2017). Rhetorical Sentence Categorization for Scientific Paper Using Word2Vec Semantic Representation. Paper presented at the Journal of Physics Conference Series.
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523.
Sandanayake, T. C., Limesha, G. A. I., Madhumali, T. S. S., Mihirani, W. P. I., Peiris, M. S. A., & Acm.(2018). Automated CV Analyzing and Ranking Tool to Select Candidates for Job Positions. New York: Assoc Computing Machinery.
Saucier, G., & Goldberg, L. R. (2001). Lexical Studies of Indigenous Personality Factors: Premises, Products, and Prospects. Journal of personality, 69(6), 847-879.
Schultz, D. P., & Schultz, S. E.(2008). Theories of Personality: Cengage Learning.
Shoss, M. K., & Strube, M. J. (2011). How do you fake a personality test? An investigation of cognitive models of impression-managed responding. Organizational Behavior and Human Decision Processes, 116(1), 163-171.
Strohmeier, S., & Piazza, F. (2015). Artificial intelligence techniques in human resource management—a conceptual exploration. In Intelligent techniques in engineering management (pp. 149-172): Springer.
Suen, H., Hung, K., & Lin, C.(2019). TensorFlow-Based Automatic Personality Recognition Used in Asynchronous Video Interviews. Ieee Access, 7, 61018-61023.
Sumathy, K., & Chidambaram, M.(2013). Text Mining: Concepts, Applications, Tools and Issues An Overview. International Journal of Computer Applications, 80, 29-32.
Suzek, T. O.(2017). Using latent semantic analysis for automated keyword extraction from large document corpora. Turkish Journal of Electrical Engineering and Computer Sciences, 25(3), 1784-1794.
Tsumoto, S., Kimura, T., Iwata, H., & Hirano, S. (2017, 11-14 Dec. 2017). Mining text for disease diagnosis in hospital information system. Paper presented at the 2017 IEEE International Conference on Big Data (Big Data).
Viera, A. F. G.(2017). Machine Learning Techniques Used for Text Mining. Investigacion Bibliotecologica, 31(71), 103-126.
Vossen, P. (1998). Introduction to eurowordnet. In EuroWordNet: A multilingual database with lexical semantic networks (pp. 1-17): Springer.
Wu, Y. (2012, 24-26 Aug. 2012). Based on Machine Learning of Data Mining to Further Explore. Paper presented at the 2012 International Conference on Computer Science and Information Processing (CSIP).
Ye, Q., Zhang, Z., & Law, R. (2009). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 36(3, Part 2), 6527-6535.
Youshan, B., & Hassan, Z. (2015). The Effect of Employees Personality on Organizational Performance: Study on Insurance Company. International Journal of Accounting and Business Management, 4, 187-196.
Zhang, C., Wang, H., Liu, Y., Wu, D., Liao, Y., & Wang, B. (2008). Automatic keyword extraction from documents using conditional random fields. 4, 1169-1180.
Zhang, D., Xu, H., Su, Z., & Xu, Y. (2015). Chinese comments sentiment classification based on word2vec and SVMperf. Expert Systems with Applications, 42(4), 1857-1863.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *