|
參考文獻
中文部分
王鵬豪(2020)。高低年級數學臆測教學的規範之比較。國立清華大學數理教育研究所碩士論文,未出版,新竹。 吳明隆(2001)。教育行動研究導論-理論與實務。台北:五南。 余姿縈(2018)。初任教師建立數學臆測規範之行動研究:以高年級為例。國立清華大學數理教育研究所博士論文,未出版,新竹。 李賢哲、李彥斌(2002)。以科學過程技能融入動手做工藝教材培養國小學童科學創造力。科學教育學刊,10(4),,341-372. 林天佑(2005)。教師行動研究準則:普及化的基石。學校行政,35,1-16。 林慧茵(2011)。探討以臆測教學為中心的探究教學對高職實用技能學程學生數學學習動機之影響(未出版之碩士論文)。國立師範大學科學教育研究所,臺北。 林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。 周姝聿(2018)。一位體制外教師實施臆測教學在造例階段的任務設計之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 林碧珍(2020)。學生在臆測任務課堂表現的數學創造性評量。科學教育期刊。28(S),429-455。 林劭帆(2020)。融入泰雅文化學校本位課程之臆測任務設計與實踐之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 林碧珍(2021)。素養導向數學臆測教學模式之理論與實務。臺北市:師大書苑。 林琨筌(2023)。數學臆測教學提升國小資優生數學創思力之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 林碧珍、鄭俊彥、蔡寶桂(2018)。國小六年級學生「數學論證評量工具」之建構。測驗學刊,65(3),257-289。 周姝聿、林碧珍(2019)。造例設計影響學生提出猜想之研究。發表於2019第十一屆科技與數學教育國際學術研討會暨數學教學工作坊,國立台中教育大學數學教育系,台中。 林碧珍、陳姿靜(2021)。數學臆測教學模式教戰守則。台北市:師大書苑有限公司。 夏林清等譯(1997)。行動研究方法導論。台北:遠流。 徐蓓矣(2021)。以活動理論詮釋三個數學臆測教學種子教師團體培訓活動。(未出版碩士論文。國立清華大學數裡教育研究所。新竹。 張春興(1994)。教育心理學-三化取向的理論與實踐。台北:東華。 教育部(2003)。創造力教育白皮書。臺北市:作者。 張德銳(2013)。教學行動研究。台北:高等教育。 教育部(2014)。十二年國民基本教育課程綱要總綱發布版。臺北市:作者。 教育部(2014)。十二年國民基本教育課程綱要數學領域課程手冊。臺北市:作者。 張世慧(2018)。創造力:理論、教育與技法(3版)。台北:五南。 張廖珮鈺、林碧珍(2020)。數學臆測教學中教師擔任協調者角色之教學行為。臺灣數學教育期刊,7(2),1-23。 陳伯璋(1988)。行動研究法:教育研究方法的新取向。台北: 南宏圖書公司。 陳佳明(2018)。一位國小五年級教師建立從造例到提出猜想臆測教學規範之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 陳冠如(2023)。一位高年級教師實施創思力導向數學臆測教學之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 陳英娥、林福來(1998)。數學臆測的思惟模式。科學教育學刊,6(2),191-218。 黃湘武(1980)。皮亞傑認知心理學與科學教育。科學教育月刊,37,12-17。 黃敏晃、周筱亭(2006)。國小數學教材分析-整數的數概念與加減運算。國立教育研究院籌備處。 游淑美(2018)。一位體制外教師三年級數學臆測任務設計及實踐之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。 劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊, 2(1), 23-40. 廖淑台(1990)。由基本概念及研究方法論及皮亞傑的幼兒自我中心。幼兒教育年刊, 3,80-91. 蔡清田(2000)。教育行動研究。臺北市:五南。 葉玉珠(2005)。創意發展:生育乎?養育乎?。教育研究月刊:創造力與競爭力,133,63-76。 藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究 (未出版碩士論文)。國立新竹教育研究所,新竹。
英文部分
Arbaugh, F., & Brown, C. (2005). Analyzing mathematical tasks: A catalyst for change? Journal Mathe matics Teacher Education , 8, 499–536. Benko, P., & Maher, C. A. (2006). Students constructing representations for outcomes of experiments. In J. N. H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th conference of the International Group for the Psychology of mathematics education (Vol. 2, pp. 137–143). Prague, Czech Republic: PME. Beghetto, R. A., Kaufman, J. C., & Baer, J. (2014). Teaching for creativity in the common core classroom. Teachers College Press. Cropley, A. (2006), “In Praise of Convergent Thinking”, Creativity Research Journal, Vol. 18/3, pp. 391-404. Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding teaching and classroom practice in mathematics. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 225-256). Charlotte, NC: Information Age Publishing. Guilford, J. (1967). The nature of human intelligence. New York: McGraw-Hill. Hoth, J., Kaiser, G., Busse, A., Doehrmann, M., Koenig, J., & Blömeke, S. (2017). Professional competences of teachers for fostering creativity and supporting high-achieving students. ZDM,49(1), 107-120. International Association for the Evaluation of Educational Achievement (IEA). (2005). Mathematics and science study special initiative in problem solving and inquiry. Boston: IEA. Available at: http://timss.bc.edu/timss2003i/psi.html. Isabel Vale, Teresa Pimentel, and Ana Barbosa (2018) The Power of Seeing in Problem Solving and Creativity: An Issue Under Discussion. In N. Amado, S. Carreira, & K. Jones (Eds.), (pp.243–272). Broadening the scope of research on mathematical problem solving. Switzerland: Springer. Jung, D. (2001). Transformational and transactional leadership and their effects on creativity in groups. Creativity Research Journal, 13(2), 185–195. Kwon, O., Park, J., & Park, J. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7, 51-61. Kaufman, J., & Beghetto, R. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13(1), 1–12. Klein, S., & Leikin, R. (2020). Opening mathematical problems for posing open mathematical tasks: what do teachers do and feel?. Educational Studies in Mathematics, 1-17. Lampert, M. (2001). Teaching problems and the problems in teaching. New Haven, CT: Yale University Press. Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In the proceedings of The Fifth Conference of the European Society for Research in Mathematics Education - CERME-5. (pp. 2330-2339) Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman,& B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–135). Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. Journal of Creative Behavior, 45(3), 215–234 Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269-291. Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Transforming mathematics instruction (pp. 59–80). Cham, Switzerland: Springer. Leikin, R. (2016). Interplay between creativity and expertise in teaching and learning of mathematics. In Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 19-34). Szeged, Hungary: PME. Leikin, R.(2018). Openness and constraints associated with creativity-directed activities in mathematics for all students. In N. Amado, S. Carreira, & K. Jones (Eds.), Broadening the scope of research on mathematical problem solving. (pp.387–397). Switzerland: Springer. Leikin, R.(2019). Stepped tasks: Top-down structure of varying mathematical challenge. In Problem solving in mathematics instruction and teacher professional development (pp. 167-184). Springer. Livne, N. & Milgram, R. (2006). Academic versus creative abilities in mathematics: two components of the same construct? Creativity Research Journal, 18 (2), 199-212. Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the learning of mathematics, 26(1), 17-19. Lev -Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17–32.Rotterdam: Sense Publishers. Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in mathematics education: an international survey. Zdm, 45, 309-324. Lucas, B., & Spencer, E. (2017). Teaching Creative Thinking: Developing learners who generate ideas and can think critically (Pedagogy for a Changing World series). Crown House Publishing Ltd. Mann , E.(2006).Creativity: The essence of mathematics . Journal for the Education of the Gifted , 30 , 236 – 230 . Mayer, R. E. (2006). The role of domain knowledge in creative problem solving. In J. C. Kaufman & J. Baer (Eds.), Creativity and reason in cognitive development (pp. 145–158). Cambridge, New Jersey: Cambridge University Press. McKinsey & Company (2021),The future of work after covid-19., February 18, , National Academies of Science .(2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future . Washington , DC : National Academies Press . NCTM. (2014). Procedural fluency in mathematics: A position of the National Council of Teachers of Mathematics. Available at : http://www.nctm.org/about/content.aspx?id=42833 Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia—Social and Behavioral Sciences, 31, 285–291. Office of Science and Technology Policy.(2006). American competitiveness initiative . Washington , DC : White House . OECD. (2019). PISA 2021 Creative Thinking Framework (Third Draft).Available at: https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf Pehkonen, E. (1995). Introduction: Use of open-ended problems. ZDM-International Journal of Mathematics Education, 27(2), 55–57.problem solving and problem posing. Zentralblatt fur Didaktik der Mathematik, Partnership for 21st Century Skills.(2009). A. framework for 21st century learning. Tucson: AZ: P21. Available at: www.21stcenturyskills.org Proctor, R. M., & Burnett, P. C. (2004). Measuring cognitive and dispositional characteristics of creativity in elementary students. Creativity Research Journal, 16, 421–429. Purcaru, M. A. P., & Florea, O. (2017). Methods for Creativity Stimulation of Students in Math Courses. Bulletin of the Transilvania University of Brasov.Series VII, Social Sciences and Law., 10(1), 75-86. Runco, M. A. (2006). The development of children’s creativity. In B. Spodek & O. Saracho (Eds.), Handbook of research on the education of young children (pp. 121–131). Mahwah, NJ: Lawrence Erlbaum Associates.
Sternberg (2000). Identifying and development creative giftedness. Roeper Review,23(2),60-64. Sternberg, R. J. (2017). ACCEL: A new model for identifying the gifted. Roeper Review, 39(3), 152-169. Sriraman, B.(2005). Are Giftedness and Creativity Synonyms in Mathematics? The journal of Secondary Gifted Education, XVII(1), 20-36. Torrance, E. P. (1962). Guiding creative talent.Engewood Clifss, NJ:Prentice-Hall Torrance, E. P. (1974). Torrance Tests of Creative Thinking. Normstechnical movrual. Lextngton, MA: Ginn. Yerushalmy, M. (2009). Educational technology and curricular design: Promoting mathematical creativity for all students. In Creativity in mathematics and the education of gifted students (pp. 101-113). Rotterdam: Sense Publishers.
|