帳號:guest(18.117.105.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):毛薪茹
作者(外文):Mao, Hsin-Ju
論文名稱(中文):一位一年級教師以臆測教學培養學生數學創思力之行動研究
論文名稱(外文):A First-Grade Teacher's Action Research of Mathematical Conjecturing Teaching to Foster Students' Mathematical Creativity
指導教授(中文):林碧珍
指導教授(外文):Lin, Pi-Jen
口試委員(中文):蔡文煥
林勇吉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:109198513
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:162
中文關鍵詞:數學創思力數學臆測教學一年級教師
外文關鍵詞:mathematical creative thinkingmathematical conjecturing teachingfirst-grade teacher
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨本研究旨在探討在創思力導向的數學臆測教學下一年級學生的數學創思力發展過程,對教學中可能會出現的問題,提出解決方案。為探究數學臆測教學任務裡的學生的數學創思力表現,本研究以林碧珍教授(2020)的數學臆測任務的數學創思力評量架構為基礎,對一年級的數學創思力進行討論。研究方法採用行動研究,以研究者在新竹縣任教的一年級學生為研究對象,在課堂進行教學。教學單元選擇數的變化與關係的主題,在18以內的加法與18以內的減法兩個單元中,進行創思力導向的數學臆測教學。研究期間透過教學現場錄影和錄音、學生的學習單、諍友的對話和研究過程中的省思日誌等資料,敘寫研究歷程所面臨的困難與解決對策。

研究結果發現: 在一年級培養流暢性時,要發展學生確實檢驗數據,以創造正確例的能力,並透過開放描述用語讓個人能產出多個猜想。在書寫猜想時,注意學生猜想要有憑有據且清楚,讓學生寫下觀察的算式,並建立臆測書寫規範:不寫分類、要找證據和要寫確定的猜想。在培養變通性時,要培養學生整理出有規律又易觀察的分類,並讓學生釐清和分辨猜想類別,以增加提出多類猜想機會。培養一年級猜想的原創性,在造例階段要注意小組彙整單觀察的數據要多元多變,並在學生提出猜想時,使用臆測規範,強調忠於原創,有新穎想法的態度。培養精緻性的過程,為了讓學生猜想脫離表象觀察,可以在提出猜想階段教條件複句,釐清數學條件主次關係。之後透過效化階段讓學生理解猜想品質,使猜想提升至多維度觀察。至效化與一般化階段,藉由團體討論與彙整修正猜想,並加上限制條件或調整前提,使得學生非恆真的猜想成為恆真猜想,讓猜想推論到所有例子皆成立。本研究也於文末對一年級數學創思力導向的臆測教學和教學者提供相關的研究建議和未來的研究方向。
This study aims to investigate the development process of mathematical creative thinking in first-grade students under creativity-directed mathematical conjecturing teaching, and to propose solutions to potential issues that may arise during the teaching.To investigate the mathematical creative thinking performance of students engaged in mathematical creativity-directed tasks, this study is based on the mathematical creative thinking assessment framework developed by Professor Pi-Jen Lin’s (2020) and focuses on first-grade mathematical creative thinking.The study discusses the first-grade mathematical creative thinking development process.
The research methodology employed action research, with the researcher using first-grade students under their instruction in Hsinchu County as the research subjects, conducting teaching in the classroom. The instructional units revolved around the theme of number changes and relationships, implemented in two units: addition within 18 and subtraction within 18, following a creativity-directed mathematical conjecturing teaching approach. Throughout the research period, data was collected through on-site teaching video recordings and audio recordings, students' worksheets, colleague discussions, and reflective diary in the research process, describing the challenges encountered and the corresponding solutions.
The research findings reveal that in fostering fluency in first-grade students, it is essential to develop their ability to critically examine data to generate accurate examples. This is achieved through open-ended language , enabling students to generate multiple conjectures. When writing conjectures, it is crucial that students provide evidence and clarity, including writing observed equations and adhering to conjecture writing guidelines such as not categorizing, seeking evidence, and ensuring well-defined conjectures.
To foster flexibility, students should be encouraged to clarify and distinguish conjecture categories to increase the chances of proposing multiple conjectures. Fostering originality in first-grade conjectures involves during the example generation phase, it is important that data observed by the small groups is diverse, and students should be guided by conjecture guidelines to emphasize faithfulness to originality and the retention of novel ideas.
In the development of elaboration, students should be guided to move beyond superficial observations. This can be achieved by introducing conditional compound sentences during the conjecture proposal phase to clarify mathematical condition priority. Subsequently, during the refining stage, students can gain an understanding of conjecture quality, elevating conjectures to multi-dimensional observations. In the final stages of elaboration and generalization, group discussions and conjecture revisions, along with the introduction of limiting conditions or adjusting assumptions, enable students to transform non-tautological conjectures into tautological ones, allowing conjectures to apply to all instances.
The study concludes by providing research recommendations and future directions for first-grade mathematical creative thinking-oriented conjecture-based teaching and educators.
目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 5
第三節 名詞釋義 6
第四節 研究範圍與限制 7
第二章 文獻探討 8
第一節 數學創造力 8
第二節 數學臆測教學 19
第三節 創思力導向的臆測教學 27
第三章 研究方法與步驟 50
第一節 研究情境 50
第二節 研究架構與流程 55
第三節 資料蒐集與分析 63
第四節 資料的三角校正 72
第四章 研究結果 73
第一節 數學臆測教學培養流暢性的行動歷程 73
第二節 數學臆測教學培養變通性的行動歷程 91
第三節 數學臆測教學培養原創性的行動歷程 108
第四節 數學臆測教學培養精緻性的行動歷程 119
第五章 結論與建議 133
第一節 結論 133
第二節 建議 139
參考文獻 142
附錄 149

參考文獻

中文部分

王鵬豪(2020)。高低年級數學臆測教學的規範之比較。國立清華大學數理教育研究所碩士論文,未出版,新竹。
吳明隆(2001)。教育行動研究導論-理論與實務。台北:五南。
余姿縈(2018)。初任教師建立數學臆測規範之行動研究:以高年級為例。國立清華大學數理教育研究所博士論文,未出版,新竹。
李賢哲、李彥斌(2002)。以科學過程技能融入動手做工藝教材培養國小學童科學創造力。科學教育學刊,10(4),,341-372.
林天佑(2005)。教師行動研究準則:普及化的基石。學校行政,35,1-16。
林慧茵(2011)。探討以臆測教學為中心的探究教學對高職實用技能學程學生數學學習動機之影響(未出版之碩士論文)。國立師範大學科學教育研究所,臺北。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
周姝聿(2018)。一位體制外教師實施臆測教學在造例階段的任務設計之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
林碧珍(2020)。學生在臆測任務課堂表現的數學創造性評量。科學教育期刊。28(S),429-455。
林劭帆(2020)。融入泰雅文化學校本位課程之臆測任務設計與實踐之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
林碧珍(2021)。素養導向數學臆測教學模式之理論與實務。臺北市:師大書苑。
林琨筌(2023)。數學臆測教學提升國小資優生數學創思力之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
林碧珍、鄭俊彥、蔡寶桂(2018)。國小六年級學生「數學論證評量工具」之建構。測驗學刊,65(3),257-289。
周姝聿、林碧珍(2019)。造例設計影響學生提出猜想之研究。發表於2019第十一屆科技與數學教育國際學術研討會暨數學教學工作坊,國立台中教育大學數學教育系,台中。
林碧珍、陳姿靜(2021)。數學臆測教學模式教戰守則。台北市:師大書苑有限公司。
夏林清等譯(1997)。行動研究方法導論。台北:遠流。
徐蓓矣(2021)。以活動理論詮釋三個數學臆測教學種子教師團體培訓活動。(未出版碩士論文。國立清華大學數裡教育研究所。新竹。
張春興(1994)。教育心理學-三化取向的理論與實踐。台北:東華。
教育部(2003)。創造力教育白皮書。臺北市:作者。
張德銳(2013)。教學行動研究。台北:高等教育。
教育部(2014)。十二年國民基本教育課程綱要總綱發布版。臺北市:作者。
教育部(2014)。十二年國民基本教育課程綱要數學領域課程手冊。臺北市:作者。
張世慧(2018)。創造力:理論、教育與技法(3版)。台北:五南。
張廖珮鈺、林碧珍(2020)。數學臆測教學中教師擔任協調者角色之教學行為。臺灣數學教育期刊,7(2),1-23。
陳伯璋(1988)。行動研究法:教育研究方法的新取向。台北: 南宏圖書公司。
陳佳明(2018)。一位國小五年級教師建立從造例到提出猜想臆測教學規範之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
陳冠如(2023)。一位高年級教師實施創思力導向數學臆測教學之行動研究。(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
陳英娥、林福來(1998)。數學臆測的思惟模式。科學教育學刊,6(2),191-218。
黃湘武(1980)。皮亞傑認知心理學與科學教育。科學教育月刊,37,12-17。
黃敏晃、周筱亭(2006)。國小數學教材分析-整數的數概念與加減運算。國立教育研究院籌備處。
游淑美(2018)。一位體制外教師三年級數學臆測任務設計及實踐之行動研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹。
劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊, 2(1), 23-40.
廖淑台(1990)。由基本概念及研究方法論及皮亞傑的幼兒自我中心。幼兒教育年刊, 3,80-91.
蔡清田(2000)。教育行動研究。臺北市:五南。
葉玉珠(2005)。創意發展:生育乎?養育乎?。教育研究月刊:創造力與競爭力,133,63-76。
藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究 (未出版碩士論文)。國立新竹教育研究所,新竹。









英文部分

Arbaugh, F., & Brown, C. (2005). Analyzing mathematical tasks: A catalyst for change? Journal Mathe matics Teacher Education , 8, 499–536.
Benko, P., & Maher, C. A. (2006). Students constructing representations for outcomes of experiments. In J. N. H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th conference of the International Group for the Psychology of mathematics education (Vol. 2, pp. 137–143). Prague, Czech Republic: PME.
Beghetto, R. A., Kaufman, J. C., & Baer, J. (2014). Teaching for creativity in the common core classroom. Teachers College Press.
Cropley, A. (2006), “In Praise of Convergent Thinking”, Creativity Research Journal, Vol. 18/3, pp. 391-404.
Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding teaching and classroom practice in mathematics. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 225-256). Charlotte, NC: Information Age Publishing.
Guilford, J. (1967). The nature of human intelligence. New York: McGraw-Hill.
Hoth, J., Kaiser, G., Busse, A., Doehrmann, M., Koenig, J., & Blömeke, S. (2017). Professional competences of teachers for fostering creativity and supporting high-achieving students. ZDM,49(1), 107-120.
International Association for the Evaluation of Educational Achievement (IEA). (2005). Mathematics and science study special initiative in problem solving and inquiry. Boston: IEA. Available at: http://timss.bc.edu/timss2003i/psi.html.
Isabel Vale, Teresa Pimentel, and Ana Barbosa (2018) The Power of Seeing in Problem Solving and Creativity: An Issue Under Discussion. In N. Amado, S. Carreira, & K. Jones (Eds.), (pp.243–272). Broadening the scope of research on mathematical problem solving. Switzerland: Springer.
Jung, D. (2001). Transformational and transactional leadership and their effects on creativity in groups. Creativity Research Journal, 13(2), 185–195.
Kwon, O., Park, J., & Park, J. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7, 51-61.
Kaufman, J., & Beghetto, R. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13(1), 1–12.
Klein, S., & Leikin, R. (2020). Opening mathematical problems for posing open mathematical tasks: what do teachers do and feel?. Educational Studies in Mathematics, 1-17.
Lampert, M. (2001). Teaching problems and the problems in teaching. New Haven, CT: Yale University Press.
Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In the proceedings of The Fifth Conference of the European Society for Research in Mathematics Education - CERME-5. (pp. 2330-2339)
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman,& B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–135).
Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. Journal of Creative Behavior, 45(3), 215–234
Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269-291.
Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Transforming mathematics instruction (pp. 59–80). Cham, Switzerland: Springer.
Leikin, R. (2016). Interplay between creativity and expertise in teaching and learning of mathematics. In Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 19-34). Szeged, Hungary: PME.
Leikin, R.(2018). Openness and constraints associated with creativity-directed activities in mathematics for all students. In N. Amado, S. Carreira, & K. Jones (Eds.), Broadening the scope of research on mathematical problem solving. (pp.387–397). Switzerland: Springer.
Leikin, R.(2019). Stepped tasks: Top-down structure of varying mathematical challenge. In Problem solving in mathematics instruction and teacher professional development (pp. 167-184). Springer.
Livne, N. & Milgram, R. (2006). Academic versus creative abilities in mathematics: two components of the same construct? Creativity Research Journal, 18 (2), 199-212.
Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the learning of mathematics, 26(1), 17-19.
Lev -Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17–32.Rotterdam: Sense Publishers.
Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in mathematics education: an international survey. Zdm, 45, 309-324.
Lucas, B., & Spencer, E. (2017). Teaching Creative Thinking: Developing learners who generate ideas and can think critically (Pedagogy for a Changing World series). Crown House Publishing Ltd.
Mann , E.(2006).Creativity: The essence of mathematics . Journal for the Education of the Gifted , 30 , 236 – 230 .
Mayer, R. E. (2006). The role of domain knowledge in creative problem solving. In J. C. Kaufman & J. Baer (Eds.), Creativity and reason in cognitive development (pp. 145–158). Cambridge, New Jersey: Cambridge University Press.
McKinsey & Company (2021),The future of work after covid-19., February 18, ,
National Academies of Science .(2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future . Washington , DC : National Academies Press .
NCTM. (2014). Procedural fluency in mathematics: A position of the National Council of Teachers of Mathematics. Available at :
http://www.nctm.org/about/content.aspx?id=42833
Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia—Social and Behavioral Sciences, 31, 285–291.
Office of Science and Technology Policy.(2006). American competitiveness initiative . Washington , DC : White House .
OECD. (2019). PISA 2021 Creative Thinking Framework (Third Draft).Available at: https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf
Pehkonen, E. (1995). Introduction: Use of open-ended problems. ZDM-International Journal of Mathematics Education, 27(2), 55–57.problem solving and problem posing. Zentralblatt fur Didaktik der Mathematik,
Partnership for 21st Century Skills.(2009). A. framework for 21st century learning. Tucson: AZ: P21. Available at: www.21stcenturyskills.org
Proctor, R. M., & Burnett, P. C. (2004). Measuring cognitive and dispositional characteristics of creativity in elementary students. Creativity Research Journal, 16, 421–429.
Purcaru, M. A. P., & Florea, O. (2017). Methods for Creativity Stimulation of Students in Math Courses. Bulletin of the Transilvania University of Brasov.Series VII, Social Sciences and Law., 10(1), 75-86.
Runco, M. A. (2006). The development of children’s creativity. In B. Spodek & O. Saracho (Eds.), Handbook of research on the education of young children (pp. 121–131). Mahwah, NJ: Lawrence Erlbaum Associates.

Sternberg (2000). Identifying and development creative giftedness. Roeper
Review,23(2),60-64.
Sternberg, R. J. (2017). ACCEL: A new model for identifying the gifted. Roeper Review,
39(3), 152-169.
Sriraman, B.(2005). Are Giftedness and Creativity Synonyms in Mathematics? The journal of Secondary Gifted Education, XVII(1), 20-36.
Torrance, E. P. (1962). Guiding creative talent.Engewood Clifss, NJ:Prentice-Hall
Torrance, E. P. (1974). Torrance Tests of Creative Thinking. Normstechnical movrual. Lextngton, MA: Ginn.
Yerushalmy, M. (2009). Educational technology and curricular design: Promoting
mathematical creativity for all students. In Creativity in mathematics and the education
of gifted students (pp. 101-113). Rotterdam: Sense Publishers.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *