帳號:guest(3.145.84.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王雲山
作者(外文):Wang,Yun-Shan
論文名稱(中文):國中不同版本的數學教科書中發展幾何推理證明之比較研究
論文名稱(外文):A comparative study on development of geometric reasoning proofs in different versions of junior high school mathematics textbooks
指導教授(中文):林碧珍
蔡文煥
指導教授(外文):Lin, Pi-Jen
Tsai, Wen-Huan
口試委員(中文):林勇吉
袁媛
口試委員(外文):Lin, Yung-Chi
Yuan, Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:109198509
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:102
中文關鍵詞:國中數學教科書幾何推理證明教科書分析
外文關鍵詞:junior high school mathematics textbooksgeometric reasoning proofstextbook analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在分析
108課程綱要 不同版本 國中數學教科書於八年級三角形基
本性質單元中,發展幾何推理證明的過程內容。研究 採用內容分析法,以國中數學教科書主要的三個版本(K版本、H版本及N版本),做為比較分析在八
年級三角形基本性質單元 中給予學生發展幾何推理證明過程中的細項,研究單
位分為演練 題 及練習題,分別 比較 三 版本,在發展幾何推理證明類型的題目
中, ,(1)演練題中不同的 數學陳述或情境及情境探索的布題分布情形 (2)練習題中不同的 數學陳述或情境及情境探索的布題分布情形(3)練習題中不同的
預期學生行為的布題分布情形,研究結果以描述統計方法呈現。
分析結果發現
三版本在這單元中的發展幾何推理證明 題型 占比沒有太大
的差異 單就題目數而言都是 H版本最多,而要讓學生自己思考探究的方面而
言,三版本都還是較注重在教師的引導演練。
關鍵字:國中數學教科書、幾何推理證明、教科書分析
This study aims to analyze the content of the process of developing geometric reasoning proofs in the elementary properties of triangles unit in eighth grade in different versions of junior high school mathematics textbooks. The study adopts content analysis method and uses the three main versions of junior high school mathematics textbooks (K version, H version and N version) as a comparative analysis to provide students with detailed items in the process of developing geometric reasoning and proofs in the eighth grade basic properties of triangles unit. , the research unit is divided into teacher practice questions and student practice questions, and three versions are compared respectively. (1) In the development of geometric reasoning proof type questions, the distribution of different mathematical statements or situations and situation exploration in the teacher practice questions. (2) In the development of geometric reasoning proof type questions, students practice the distribution of different mathematical statements or situations and situation exploration. (3) In the development of geometric reasoning proof type questions, the distribution of different expected student behaviors in students' practice questions, the research results are presented using descriptive statistical methods. The analysis results show that there is not much difference in the proportion of question types among the three versions in developing geometric reasoning in this unit. In terms of the number of questions alone, version H has the largest number. In terms of teachers guiding students, version H is relatively It is relatively complete; in terms of allowing students to think and explore on their own, the three versions still pay more attention to the guidance and training of teachers. Keywords: junior high school mathematics textbooks, geometric reasoning proofs, textbook analysis
目錄
第一章 緒論 6
第一節 研究背景與動機 6
第二節 研究目的及研究問題8
第三節 名詞解釋 9
第四節 研究範圍及研究限制 11

第二章 文獻探討 12
第一節 數學推理與證明的意涵12
第二節 數學教科書推理與證明理論研究框架 14
第三節 數學教科書推理與證明實證研究 37

第三章 研究方法 41
第一節 研究架構 41
第二節 研究對象 43
第三節 資料整理與分析 44

第四章 研究結果 61
第一節 不同版本發展幾何推理證明題型綜合比較分析 61
第二節 不同版本演練題中不同的數學陳述或情境及情境探索的分布情形 65
第三節 不同版本練習題中不同的數學陳述或情境及情境探索的分布情形 74
第四節 不同版本演練題中不同的預期的學生行為分布情形 81

第五章 結論與建議 87
第一節 結論 87
第二節 建議 90

參考文獻 92
壹 中文文獻 92
貳 外文文獻 94

附件 100
方瓊婉、徐偉民與郭文金(2017)。運用圖形拆解法提升九年级學生幾何證明的學習表現。臺灣數學教師,38(2),1-18。
王文科、王智弘(2019)。教育研究法。五南圖書出版股份有限公司。
王石番(1996)。傳播內容分析法:理論與實證。臺北市:幼獅文化。
左台益和李建恆(2017)。從教學事件分析國中數學教科書與備課用書之設計脈絡-以三角形性質單元為例。教科書研究,10(2),67-97
周淑卿(2013) 課程綱要與教科書的差距--問題與成因。課程與教學季刊,16(3),31-58
林碧珍(2015)。國小三年级課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110
林碧珍、蔡文煥(2003)。臺灣國小四年級學生的數學成就及其相關因素之探討。科學教育期刊,285,2-38
林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐以發展學童的數學論證為例。Journal of Textbook research, 9(1).
徐偉民(2013)。國小教師數學教科書使用之初探。科學教育學刊,21(1),25-48
郝蕾(2021)。兩岸國中教科書幾何證明機會的比較研究(未出版碩士論文)。國立清華大學,新竹。
張景媛、陳萩卿(2003)。促進推理思考的認知策略。課程與教學,6(2),79-108
教育部(2008)。國民中小學九年一貫課程綱要總綱。臺北市:編者。
陳木城(2000)。臺灣地區教科書發展的回顧與前瞻。教科書制度研討會資料集104-116。新北市:中華民國教材研究發展學會。
曾瑞怡(2019)。國小數學教科書中的論證機分析--以代数為例(未出版碩士論文)。國立清華大學,新竹。
楊逸帆(2018)。國小數學教科書提供學生論證機會之比較(未出版碩士論文)。國立清華大學,新竹。
鄭芳妮(2021)。國小數學教科書中提供學生幾何推理證明機會之分析(未出版碩士論文)。國立清華大學,新竹。
趙旼冠、楊憲明(2006)。數學障礙學生數學概念理解、數學推理能力與數學解題表現之關係分析研究。特殊教育與復健學報,16,73-97。
歐用生(2000)。教育研究法。臺北市:師大
Arzarello, F., Andriano, V., Olivero, F. & Robutti, O. (1998). Abduction and conjecturing in mathematics. Philosophica, 61(1): 77-94.
Balacheff, N. (1982). Preuve et demonstration en mathematiques au college. Recherches en didactique des mathematiques, 3(3), 261-304.
Balacheff, N. (1988a). A study of students' proving processes at the junior high school level. In Second UCSMP international conference on mathematics education. NCTM.
Balacheff, N. (1998b). Construction of meaning and teacher control of learning. In Information and communications technologies in school mathematics (pp. 111- 120). Springer, Boston, MA.
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school.
A research companion to principles and standards for school mathematics, 27-44.
Bell, A. W. (1976) . A study of pupil's proof-explanations in mathematical situations. Educational Studies in Mathematics, 7(1), 23-40.
Bieda, K. N., Ji, X., Drwencke, J. & Picard, A. (2014). Reasoning-and-proving opportunities in elementary mathematics textbooks. International Journal of Educational Research, 64,71-80.
Canadas, M. C. and Castro, E. (2005). "A proposal of categorization for analyzing inductive reasoning". In Proceedings of the 4th Congress of the European Society for Research in Mathematics Education, Edited by: Bosch, M. 401- 408. Spain: Saint Feliu de Guixols.
Charles, R. I., Chancellor, D., Harcourt, D., Moore, D., Schielack. J. Van de Walle, J., et al. (1999). Scott Foresman-Addison Wesley math: Grade 5
(1 & 2). New York City, NY: Addison Wesley Longman.
Davis, P. J. and Hersh, R. (1981). The mathematical experience, Boston: Houghton-Mifflin
de Villiers, M. (1998). "An alternative approach to proof in dynamic geometry"'. In Designing learning environments for developing understanding of geometry and space, Edited by: Lehrer, R. and Chazan, D. 369-393. London: Lawrence Erlbaum Associates.
de Villiers, M. (1999). "The role and function of proof". In Rethinking proof with the Geometer's Sketchpad, Edited by: de Villiers, M. 3-10. Key Curriculum Press.
Duval, R. (1995). Geometrical Picture: Kinds of Representation and Specific Processing. In R.Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with computers in Mathematics Education, pp. 142-157. Berlin: Springer.
Duval, R. (1998). Geometry from a cognitive of view: Perspectives on the Teaching of Geometry for the 21st century. An ICMI Study, pp.37-52.
Epp. S. S. (1998). A unified framework for proof and disproof. The Mathematics Teacher, 91(8), 708-713.
Fennell, F. S., Ferrini-Mundy, J., Ginsburg, H., Greenes, C., Murphy, S., & Tate, W.(2001). Silver Burdett Ginn mathematics: Grade 5. Parsippany, NJ: Silver Burdett Ginn.
Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses?. International Journal of Science Education, 20(1), 83-97
Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1): 6-13.
Hanna, G. (2000). Proof, explanation, and exploration: An overview. Educational studies in mathematics, 44(1), 5-23. UN
Hanna, G., & de Bryn, Y. (1999) Opportunity to learn proof in Ontario grade twelve mathematics texts. Ontario Mathematics Gazette, 38, 180-187.
Hanna, G., & Yackel, E. (2003). Reasoning and proof. A research companion to NCTM's Standards, 227-236.
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in mathematics education, 31(4), 396-428.
Heinze, A., Cheng, Y.-H., Ufer, S., Lin, F.-L., & Reiss, K. (2008). Strategies to foster students' competencies in constructing multi-steps geometric proofs: Teaching experiments in Taiwan and Germany. ZDM, 40, 443-453.
Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49, 283-312.
Hurley, P. J. (2006). A concise introduction to logic (9th ed.). Belmont, CA: Thomson Learning.
Knuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof. Journal for research in mathematics education, 33(5), 379-405.
Kuhn, D., & Udell, W. (2003). The development of argument skills. Child development, 74(5), 1245-1260.
Lakatos, I. (2015). Proofs and refutations: The logic of mathematical discovery. Cambridge university press.
Linda, P. (1999). Supporting mathematical development in the early years. Philadelphia : Open University Press.
M. G. B., Boero, P.(1998). Geometry from a cognitive of view: Perspectives on the Teaching of Geometry for the 21st century. An ICMI Study, pp.52-62.
Martin, T. S., McCrone, S. M. S., Bower, M. L. W., & Dindyal, J. (2005). The interplay of teacher and student actions in the teaching and learning of geometric proof. Educational Studies in Mathematics, 60(1), 95-124.
Mason, J. and Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15: 277-289.
Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics, 41(1) , 47-68.
Miyazaki, M., Fujita, T., & Jones. K. (2017). Students' understanding of the structure of deductive proof. Educational Studies in Mathematics, 94(2), 223- 239.
Muis, K. R. (2004). Personal epistemology and mathematics: A critical review and synthesis of research. Review of educational research, 74(3), 317-377.
National Council of Teachers of Mathematics (NCTM). 2000. Principles and standards for school mathematics. Reston, Va.: NCTM.
National Council of Teachers of Mathematics. (2009). Focus in high school mathematics: Reasoning and sense making Reston, VA: Author.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC.
Otten, S., Gilbertson, N. J., Males, L. M.,, & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51-79.
Recio, A. M.,. & Godino, J. D. (2001). Institutional and personal meanings of mathematical proof. Educational studies in mathematics, 48(1), 83-99.
Reid, D. & Knipping, C. (2010). Proof in mathematics education: research, learning, and teaching. The Netherlands: Sense publisher.
Reid, D. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 33(1): 5-29.
Schmidt. W. H., & Prawat, R. S. (2006). Curriculum coherence and national control of education: Issue or non-issue?. Journal of curriculum studies, 38(6), 641-658.
Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of well-taught mathematics courses. Educational psychologist, 23(2), 145-166.
Semadeni, Z. (1984). Action proofs in primary mathematics teaching and in teacher training. For the learning of mathematics, 4(1), 32-34.
Simpson, A. (1995). Developing a proving attitude. In Conference Proceedings: Justifying and proving in school mathematics (pp. 39-46). University of London, Institute of Education.
Stylianides, A. L. (2007). Proof and proving in school mathematics. Journal for research in Mathematics Education, 38(3), 289-321.
Stylianides, D. A., Blanton, M. L., & Knuth, E. J. (Eds.). (2009). Teaching and learning proof across the grades: A K-16 perspective. New York, NY: Routledge.
Stylianides, G. J. (2008). An analytic framework of reasoning-and-proving. For the learning of mathematics, 28(1), 9-16.
Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical thinking and learning, 11(4), 258-288.
Thompson, D. R., Senk, S. L/. & Johnson, G. J (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43. 253-295.
Tinto, V. (1988). Stages of student departure: Reflections on the longitudinal character of student leaving. The journal of higher education, 59(4), 438-455.
Toulmin, S. E. (2003). The uses of argument. Cambridge university press.
University of Chicago School Mathematics Project. (2007). Everyday mathematics: Grade 5 teacher's lesson guides (1& 2). Chicago, IL: McGraw Hill Wright Group.
University of Illinois-Chicago (1998) Math trailblazers: Grade 5. Dubuque, IA: Kendall-Hunt Publishing Company. UN
Van Eemeren, F. H., Grootendorst, R., & Henkemans, A. F. S. (2002). Argumentation: Analysis, evaluation, presentation. Routledge.
Weber, K. (2009). Mathematics majors 'evaluation of mathematical arguments and their conception of proof. In Proceedings of the Twelfth sigma on rime Conference on Research in Undergraduate Mathematics Education.
Zack, V. (1999). Everyday and mathematical language in children's argumentation about proof. Educational Review, 51(2), 129-146
Zack, V., & Reid, D. A. (2003). Good-enough understanding: Theorizing about the learning of complex ideas (part 1). For the Learning of Mathematics, 23(3), 43- 50.
Zack, V., & Reid, D. A. (2004). Good-enough understanding: Theorizing about the learning of complex ideas (part 2). For the Learning of Mathematics, 24(1), 25- 28.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *