|
1. Li, C., et al., “Genetic scissors” CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioactive Materials, 2023. 22: p. 254-273. 2. Ishino, Y., M. Krupovic, and P. Forterre, History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol, 2018. 200(7). 3. Mojica, F.J.M. and L. Montoliu, On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends Microbiol, 2016. 24(10): p. 811-820. 4. Mojica, F.J., et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005. 60(2): p. 174-82. 5. Garneau, J.E., et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010. 468(7320): p. 67-71. 6. Jinek, M., et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012. 337(6096): p. 816-821. 7. Cong, L., et al., Multiplex genome engineering using CRISPR/Cas systems. Science, 2013. 339(6121): p. 819-23. 8. Laughery, M.F. and J.J. Wyrick, Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae. Curr Protoc Mol Biol, 2019. 129(1): p. e110. 9. Reider Apel, A., et al., A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res, 2017. 45(1): p. 496-508. 10. DiCarlo, J.E., et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 2013. 41(7): p. 4336-43. 11. Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013. 8(11): p. 2281-2308. 12. Rainha, J., J.L. Rodrigues, and L.R. Rodrigues, CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel), 2020. 11(1). 13. Yang, Y. and Y. Huang, The CRIPSR/Cas gene-editing system-an immature but useful toolkit for experimental and clinical medicine. Animal Model Exp Med, 2019. 2(1): p. 5-8. 14. Patrick Pausch, B.A.-S., Ezra Bisom-Rapp, Connor A. Tsuchida,, B.F.C. Zheng Li, Gavin J. Knott, Steven E. Jacobsen,, and J.A.D. Jillian F. Banfield, CRISPR-CasF from huge phages is a hypercompact genome editor. Science, 2020. 369: p. 333-337. 15. Pausch, P., et al., DNA interference states of the hypercompact CRISPR–CasΦ effector. Nature Structural & Molecular Biology, 2021. 28(8): p. 652-661. 16. Carabias, A., et al., Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nature Communications, 2021. 12(1): p. 4476. 17. Engler, C., R. Kandzia, and S. Marillonnet, A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008. 3(11): p. e3647. 18. Gibson, D.G., et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009. 6(5): p. 343-345. 19. Gietz, R.D. and R.A. Woods, Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol, 2002. 350: p. 87-96. 20. Boonchird, C., F. Messenguy, and E. Dubois, Determination of amino acid sequences involved in the processing of the ARG5/ARG6 precursor in Saccharomyces cerevisiae. Eur J Biochem, 1991. 199(2): p. 325-35. 21. Al-Shayeb, B., et al., Clades of huge phages from across Earth’s ecosystems. Nature, 2020. 578(7795): p. 425-431. 22. Mumberg, D., R. Müller, and M. Funk, Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 1995. 156(1): p. 119-22. 23. Froger, A. and J.E. Hall, Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp, 2007(6): p. 253. 24. Li, J., et al., Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet, 2012. 8(4): p. e1002630. 25. Gutin, A., et al., Temperature dependence of the folding rate in a simple protein model: Search for a “glass” transition. The Journal of Chemical Physics, 1998. 108(15): p. 6466-6483. 26. Toh-e, A., P. Guerry-Kopecko, and R.B. Wickner, A stable plasmid carrying the yeast Leu2 gene and containing only yeast deoxyribonucleic acid. J Bacteriol, 1980. 141(1): p. 413-6. 27. Emerson, C.H. and A.A. Bertuch, Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem Cell Biol, 2016. 94(5): p. 396-406. 28. Verwaal, R., et al., CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast, 2018. 35(2): p. 201-211. 29. Pâques, F. and J.E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1999. 63(2): p. 349-404. 30. Agris, P.F., F.A. Vendeix, and W.D. Graham, tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol, 2007. 366(1): p. 1-13. 31. Liu, J.-J., et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 2019. 566(7743): p. 218-223. 32. Yang, T.T., L. Cheng, and S.R. Kain, Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res, 1996. 24(22): p. 4592-3. 33. Shaner, N.C., et al., A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods, 2013. 10(5): p. 407-9. 34. Thyme, S.B., et al., Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nature Communications, 2016. 7(1): p. 11750.
|