帳號:guest(3.22.74.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋禹賢
作者(外文):Sung, Yu-Hsien
論文名稱(中文):Vps34引起的自嗜作用對於神經退化性疾病的影響
論文名稱(外文):Autophagy which is aroused by Vps34 causes neurodegenerative disease in the Drosophila animal model
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):羅中泉
陳俊宏
口試委員(外文):Lo, Chung-Chuan
Chen, Chun-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:109080551
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:32
中文關鍵詞:自嗜作用神經退化性疾病阿茲海默症高度磷酸化tau蛋白
外文關鍵詞:Vps34autophagyAlzheimer's diseasehyperphosphorylated tau protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
阿茲海默症是一種神經退化性疾病,它與tau蛋白磷酸化和β-澱粉粒蛋白的積累有關。但是,它的詳細機制仍然有很多潛在的可能性。自噬作用和tau蛋白磷酸化之間的關係十分有探討的價值,而Vps34基因則是本論文的主要目標基因。Vps34基因被抑制會使得磷酸化的tau蛋白僅僅在大腦周圍累積,不會進入或堆積在神經細胞中,這將導致阿茲海默症發作的時間會延後拉長。除此之外,從免役染色的結果發現,神經細胞內Vps34的表現量在Vps34被抑制後,有顯著下降的趨勢。此外,把Gmrgltau與Vps34被抑制的果蠅交配後產生的後代,他們的壽命只比野生型果蠅減短了1週左右的時間。Vps34會透過線粒體進行該上述的作用,線粒體則會因此無法消耗氧氣,而導致ROS升高。ROS升高的時候,正常情況下會使細胞進行細胞凋亡的步驟,但是由於Vps34表現被抑制,因此細胞凋亡過程將被迫停止在特定位置。基於該結果,可以推測出有一種機制可以保護大腦免受磷酸化tau蛋白的累積。
Alzheimer’s disease is the most common neurodegenerative disease. It relates to the tau protein hyperphosphorylation and β-amyloid accumulation. However, its detailed mechanism still has so many unknown possibilities. One possible protein to the manipulating mechanism of tau and autophagy is Vps34, which is a phosphatidylinositol lipid kinase. The Vps34 gene knockdown can make phosphorylated tau protein merely accumulate around the brain and be unable to attack the brain or even enter neuron cells. The dysfunctional mitochondria would be unable to consume oxygen, and thus, it causes the ROS to rise. Under disease conditions, the ROS rising would make the cell conduct apoptosis. However, when Vps34 is knockdown, we observed that the tau-induced apoptosis process is abnegation. Based on the result, it must be a mechanism protecting the brain from phosphorylated tau protein accumulating when knockdown Vps34. Besides, the life span of the Gmrgltau > Vps34-RNAi Drosophila is only one week shorter than the WT group.
Abstract.............................................................2
摘要.................................................................3
Acknowledge..........................................................4
Introduction.........................................................6
Materials & Methods.................................................12
Results.............................................................15
1.Vps34 knockdown makes Drosophila’s eyes and lives recover to WT...15
2.Vps34 knockdown causes P-tau to be exclusive of the brain.........16
3.Vps34 is more effective on GmrGal4Tau4............................17
Discussion..........................................................19
Figures.............................................................22
Figure 1. Vps34 knockdown potential pathway.........................22
Figure 2. SEM photo of Drosophila’s eyes............................23
Figure 3. Drosophila lifespan.......................................24
Figure 4. Confocal microscopy photo under different genotype........25
Figure 5. The ROS change with Vps34 knockdown.......................27
Figure 6. Possible mechanism of Vps34 knockdown in Drosophila.......29
References..........................................................30
1. Glenner, G.G. and C.W. Wong, Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun, 1984. 120(3): p. 885-90.
2. Ballard, C., et al., Alzheimer's disease. Lancet, 2011. 377(9770): p. 1019-31.
3. Khan, S., K.H. Barve, and M.S. Kumar, Recent Advancements in Pathogenesis, Diagnostics, and Treatment of Alzheimer's Disease. Curr Neuropharmacol, 2020. 18(11): p. 1106-1125.
4. Scheltens, P., et al., Alzheimer's disease. Lancet, 2021. 397(10284): p. 1577-1590.
5. Delacourte, A. and A. Defossez, [Biochemical characterization of an immune serum which specifically marks neurons in neurofibrillary degeneration in Alzheimer's disease]. C R Acad Sci III, 1986. 303(11): p. 439-44.
6. Grundke-Iqbal, I., et al., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem, 1986. 261(13): p. 6084-9.
7. Zatta, P.F., Aluminum binds to the hyperphosphorylated tau in Alzheimer's disease: a hypothesis. Med Hypotheses, 1995. 44(3): p. 169-72.
8. Castellani, R.J., The Significance of Tau Aggregates in the Human Brain. Brain Sci, 2020. 10(12).
9. Mirzoyan, Z., et al., Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet, 2019. 10: p. 51.
10. Barlow, S., et al., Stable expression of heterologous microtubule-associated proteins (MAPs) in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization. J Cell Biol, 1994. 126(4): p. 1017-29.
11. Armstrong, R.A., The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Folia Neuropathol, 2009. 47(4): p. 289-99.
12. Sochocka, M., K. Zwolinska, and J. Leszek, The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol, 2017. 15(7): p. 996-1009.
13. Sochocka, M., et al., The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol, 2019. 56(3): p. 1841-1851.
14. Dodiya, H.B., et al., Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol Dis, 2020. 135: p. 104352.
15. Kjaeldgaard, A.L., et al., Amyotrophic lateral sclerosis: The complement and inflammatory hypothesis. Mol Immunol, 2018. 102: p. 14-25.
16. Radi, E., et al., Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis, 2014. 42 Suppl 3: p. S125-52.
17. Herman, P.K. and S.D. Emr, Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol, 1990. 10(12): p. 6742-54.
18. Pacheco, C.D. and A.P. Lieberman, Lipid trafficking defects increase Beclin-1 and activate autophagy in Niemann-Pick type C disease. Autophagy, 2007. 3(5): p. 487-9.
19. Zhong, Y., et al., Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 2009. 11(4): p. 468-76.
20. Furuya, N., et al., The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 2005. 1(1): p. 46-52.
21. Bilanges, B., Y. Posor, and B. Vanhaesebroeck, PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol, 2019. 20(9): p. 515-534.
22. Kihara, A., et al., Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 2001. 152(3): p. 519-30.
23. Pasquier, B., Autophagy inhibitors. Cell Mol Life Sci, 2016. 73(5): p. 985-1001.
24. Ohashi, Y., Activation Mechanisms of the VPS34 Complexes. Cells, 2021. 10(11).
25. Rostislavleva, K., et al., Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 2015. 350(6257): p. aac7365.
26. Ohashi, Y., et al., Membrane characteristics tune activities of endosomal and autophagic human VPS34 complexes. Elife, 2020. 9.
27. Ohashi, Y., S. Tremel, and R.L. Williams, VPS34 complexes from a structural perspective. J Lipid Res, 2019. 60(2): p. 229-241.
28. Miller, S., et al., Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 2010. 327(5973): p. 1638-42.
29. Bilanges, B., et al., Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nat Commun, 2017. 8(1): p. 1804.
30. Juhasz, G., et al., The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol, 2008. 181(4): p. 655-66.
31. Magdolen, V., et al., Transcriptional control by galactose of a yeast gene encoding a protein homologous to mammalian aldo/keto reductases. Gene, 1990. 90(1): p. 105-14.
32. Ito, K., J. Urban, and G.M. Technau, Distribution, classification, and development ofDrosophila glial cells in the late embryonic and early larval ventral nerve cord. Rouxs Arch Dev Biol, 1995. 204(5): p. 284-307.
33. Lin, D.M., V.J. Auld, and C.S. Goodman, Targeted neuronal cell ablation in the Drosophila embryo: pathfinding by follower growth cones in the absence of pioneers. Neuron, 1995. 14(4): p. 707-15.
34. Laverty, C., et al., Abnormal dosage compensation of reporter genes driven by the Drosophila glass multiple reporter (GMR) enhancer-promoter. PLoS One, 2011. 6(5): p. e20455.
35. Ambegaokar, S.S. and G.R. Jackson, Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet, 2011. 20(24): p. 4947-77.
36. Jackson, G.R., et al., Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 2002. 34(4): p. 509-19.
37. Wu, T.H., et al., Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol, 2013. 125(5): p. 711-25.
38. Terskikh, A., et al., "Fluorescent timer": protein that changes color with time. Science, 2000. 290(5496): p. 1585-8.
39. Piatkevich, K.D. and V.V. Verkhusha, Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr Opin Chem Biol, 2010. 14(1): p. 23-9.
40. Saiz-Lopez, P., et al., An intrinsic timer specifies distal structures of the vertebrate limb. Nat Commun, 2015. 6: p. 8108.
41. Lattao, R., et al., Tubby-tagged balancers for the Drosophila X and second chromosomes. Fly (Austin), 2011. 5(4): p. 369-70.
42. Penton, A., A. Wodarz, and R. Nusse, A mutational analysis of dishevelled in Drosophila defines novel domains in the dishevelled protein as well as novel suppressing alleles of axin. Genetics, 2002. 161(2): p. 747-62.
43. Gallardo, G. and D.M. Holtzman, Amyloid-beta and Tau at the Crossroads of Alzheimer's Disease. Adv Exp Med Biol, 2019. 1184: p. 187-203.
44. Nazio, F., et al., Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ, 2019. 26(4): p. 690-702.
45. Bhandare, V.V., B.V. Kumbhar, and A. Kunwar, Differential binding affinity of tau repeat region R2 with neuronal-specific beta-tubulin isotypes. Sci Rep, 2019. 9(1): p. 10795.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *