帳號:guest(18.117.158.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許巧璇
作者(外文):Hsu, Chiao-Hsuan
論文名稱(中文):製備重組眼鏡蛇三指型毒蛋白於核磁共振光譜研究
論文名稱(外文):Strategy in preparing recombinant three-finger cobra toxins for NMR study
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):吳文桂
宋旺洲
陳子福
口試委員(外文):Wu, Wen-Guey
Sung, Wang-Chou
Tan, Choo-Hock
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:109080539
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:64
中文關鍵詞:眼鏡蛇重組蛇毒蛋白三指型毒蛋白心臟毒素神經毒素雙硫鍵異構酶核磁共振光譜
外文關鍵詞:cobrarecombinant snake toxinthree finger toxinneurotoxincardiotoxindisulfide bond isomeraseNMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中華眼鏡蛇(Naja atra)蛇毒中,有高達約百分之八十之蛇毒為富含雙硫鍵(disulfide-rich)的毒蛋白。其中,又以致命性的短鏈神經毒素(short chain α-neurotoxins)及心臟毒素(cardiotoxins)兩類三指型毒素為大宗。在大腸桿菌中製備這樣富含雙硫鍵的重組蛋白,同時具有結構及活性,是長久以來科學家欲解決的問題;因大腸桿菌細胞質環境不利於富含雙硫鍵的蛋白進行正確的結構折疊,而產生之重組蛋白也可能造成其死亡。此篇論文中,我們欲應用雙硫鍵異構酶(Disulfide bond C, DsbC)接合之重組蛇毒蛋白,預期雙硫鍵異構酶能在表達系統中,幫助重組蛇毒蛋白進行正確結構折疊。在分別表現飯匙倩短鏈神經毒素及其中一心臟毒素(Cardiotoxin III)後,我們發現透過這樣的重組蛋白表現策略,可以穩定生產具有結構的重組蛇毒蛋白。從二維核磁共振光譜ˊ中可以看出,短鏈神經毒素及心臟毒素之重組蛋白質與天然蛋白質光譜具有相似性,顯示此表現系統能夠有效產生與天然結構相似的重組蛋白。迄今,蛇毒咬傷之治療方式並不完備,某些案例中,抗蛇毒血清無法完全中和蛇毒毒性。因此,在大腸桿菌中成功表達重組蛇毒蛋白,不僅可以提供穩定及結構正確的三指型蛇毒蛋白作為新型免疫原之開發,未來結合致突變作用,還能進一步利用核磁共振光譜,找出毒蛋白之關鍵胺基酸,解答毒素之生理機制。
Disulfide-rich proteins account for about 80% of snake venom. Among the proteins, neurotoxins (NTXs) and cardiotoxins (CTXs) are most dominant. The preparation of the recombinant disulfide-rich proteins in E. coli expression system is a long-standing problem because E. coli cytoplasm is not proper for the protein folding and the possible protein toxicity could cause cell lysis. To prepare functional active NTXs and CTXs, we developed a strategy by fusing a unique protein partner, disulfide bond isomerase (Disulfide bond C, DsbC) at the N-terminus of the target proteins. DsbC assists protein folding by converting aberrant disulfide bonds to correct formation in the periplasm. Here, we tested on short chain α-neurotoxin (sNTX) and Cardiotoxin III (CTXA3) from Naja atra. Through the strategy, sustainable amounts of NTXs and CTXs could be prepared from E. coli expression system. NMR method validated the proper protein folding that HSQC and 1H-1H TOCSY demonstrated spectral similarity between native and recombinant proteins. Subsequently, 13C and 15N-labeled proteins are obtained for NMR protein backbone assignment. To date, to cure snakebite poisoning, the implementing of correct antivenom is still the most effective treatment. However, in many cases, the toxicity couldn’t be fully neutralized even the corresponding antibody in the antivenom demonstrated great affinity to the toxic molecules. To realize the structural explanation, NMR shows potential to differentiate the residues interacting with the antibody. The study could put emphasis on epitope determination and provide a new prospective for the development of new generation of antivenom.
Contents
中文摘要 i
Abstract iii
Acknowledgement iv
Abbreviation vi
1 Introduction - 1 -
2 Materials and methods - 7 -
2.1 Native protein purification - 7 -
2.1.1 FPLC purification of MMW from crude venom - 7 -
2.1.2 HPLC purification of native sNTX and CTXA3 - 7 -
2.1.3 NMR sample preparation for native proteins - 7 -
2.2 Recombinant sNTX and CTXA3 expression - 8 -
2.2.1 Construct of rsNTX and rCTXA3 - 8 -
2.2.2 Recombinant DsbC-sNTX expression - 8 -
2.2.3 Recombinant DsbC-CTXA3 expression - 9 -
2.2.4 Purification of DsbC-rsNTX and DsbC-rCTXA3 - 9 -
2.2.5 TEV protease preparation - 11 -
2.2.6 NMR sample preparation for rsNTX and rCTXA3 - 11 -
2.3 Quantification of proteins - 11 -
2.4 Mass spectroscopy - 11 -
2.5 Recombinant sNTX HSQC and backbone assignment - 12 -
3 Results - 21 -
3.1 Native protein purification - 21 -
3.1.1 MMW FPLC and HPLC profiles - 21 -
3.2 Characterization of native protein by NMR - 21 -
3.2.1 2D 1H-1H TOCSY of sNTX and CTXA3 - 21 -
3.2.2 2D 1H-15N HSQC of sNTX and CTXA3 - 22 -
3.3 Recombinant sNTX expression - 23 -
3.3.1 Induction test of DsbC-rsNTX in E. coli BL21(DE3) - 23 -
3.4 Protein purification of rsNTX with liquid chromatography - 24 -
3.4.1 rsNTX IMAC purification - 24 -
3.4.2 HPLC profile of rsNTX - 25 -
3.5 rsNTX NMR experiments - 26 -
3.5.1 2D HSQC of rsNTX each peak from HPLC result - 26 -
3.5.2 3D spectra of rsNTX backbone NMR experiments - 26 -
3.6 Recombinant CTXA3 expression - 27 -
3.6.1 Induction test of DsbC-rCTXA3 in E. coli BL21(DE3) - 27 -
3.7 Protein purification of rCTXA3 with liquid chromatography - 28 -
3.7.1 rCTXA3 IMAC purification - 28 -
3.7.2 HPLC profile of rCTXA3 - 29 -
3.8 rCTXA3 NMR experiments - 29 -
3.8.1 2D HSQC of rCTXA3 from HPLC result - 29 -
4 Discussion - 55 -
5 References - 58 -

1. World Health Organization. Snakebite envenoming. World Health Organization. (https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming, accessed 17 August 2021)
2. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: World Health Organization; 2017 (https://www.who.int/snakebites/resources/Snake_antivenom_immunoglobulins_WHO_TRS1004_Annex5.pdf?ua=1, accessed 14 August 2021).
3. Moroz-Perlmutter, C., Goldblum, N., De Vries, A., & Gitter, S. (1963). Detoxification of snake venoms and venom fractions by formaldehyde. Experimental Biology and Medicine, 112(3), 595–598. https://doi.org/10.3181/00379727-112-28113
4. C̆urin-S̆erbec Vladka, Délot, E., Faure, G., Saliou, B., Gubenšek, F., Bon, C., & Choumet, V. (1994). Antipeptide antibodies directed to the C-terminal part of ammodytoxin a react with the PLA2 subunit of crotoxin and neutralize its pharmacological activity. Toxicon, 32(11), 1337–1348. https://doi.org/10.1016/0041-0101(94)90406-5
5. Ferreira, R. N., Machado de Avila, R. A., Sanchez, E. F., Maria, W. S., Molina, F., Granier, C., & Chávez-Olórtegui, C. (2006). Antibodies against synthetic epitopes inhibit the enzymatic activity of mutalysin II, a metalloproteinase from bushmaster snake venom. Toxicon, 48(8), 1098–1103. https://doi.org/10.1016/j.toxicon.2006.07.040
6. Dolimbek, B. Z., & Zouhair Atassi, M. (1996). Protection against α-bungarotoxin poisoning by immunization with synthetic toxin peptides. Molecular Immunology, 33(7-8), 681–689. https://doi.org/10.1016/0161-5890(96)00014-4
7. de la Rosa, G., Olvera, F., Archundia, I. G., Lomonte, B., Alagón, A., & Corzo, G. (2019). Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11639-2
8. Ramos, H. R., Junqueira-de-Azevedo, I. de, Novo, J. B., Castro, K., Duarte, C. G., Machado-de-Ávila, R. A., Chavez-Olortegui, C., & Ho, P. L. (2016). A heterologous Multiepitope DNA Prime/Recombinant Protein Boost immunisation strategy for the development of an antiserum against micrurus Corallinus (coral Snake) Venom. PLOS Neglected Tropical Diseases, 10(3). https://doi.org/10.1371/journal.pntd.0004484
9. Liu, C.-C., Chou, Y.-S., Chen, C.-Y., Liu, K.-L., Huang, G.-J., Yu, J.-S., Wu, C.-J., Liaw, G.-W., Hsieh, C.-H., & Chen, C.-K. (2020). Pathogenesis of local necrosis induced by Naja Atra venom: Assessment of the neutralization ability of taiwanese freeze-dried Neurotoxic antivenom in animal models. PLOS Neglected Tropical Diseases, 14(2). https://doi.org/10.1371/journal.pntd.0008054
10. Hung, D.-Z. (2004). Taiwan’s venomous snakebite: Epidemiological, evolution and geographic differences. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(2), 96–101. https://doi.org/10.1016/s0035-9203(03)00013-0
11. Chang, K.-P., Lai, C.-S., & Lin, S.-D. (2007). Management of poisonous snake bites in Southern Taiwan. The Kaohsiung Journal of Medical Sciences, 23(10), 511–518. https://doi.org/10.1016/s1607-551x(08)70009-3
12. Mao, Y.-C., Liu, P.-Y., Chiang, L.-C., Lai, C.-S., Lai, K.-L., Ho, C.-H., Wang, T.-H., & Yang, C.-C. (2017). Naja atra snakebite in Taiwan. Clinical Toxicology, 56(4), 273–280. https://doi.org/10.1080/15563650.2017.1366502
13. Yang, S.-H., Chien, C.-M., Lu, M.-C., Lin, Y.-H., Hu, X.-W., & Lin, S.-R. (2006). Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Experimental & Molecular Medicine, 38(4), 435–444. https://doi.org/10.1038/emm.2006.51
14. Wang, C.-H., & Wu, W.-guey. (2005). Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Letters, 579(14), 3169–3174. https://doi.org/10.1016/j.febslet.2005.05.006
15. Wu, P.-L., Chiu, C.-R., Huang, W.-N., & Wu, W.-G. (2012). The role of sulfatide lipid domains in the membrane pore-forming activity of Cobra cardiotoxin. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1818(5), 1378–1385. https://doi.org/10.1016/j.bbamem.2012.02.018
16. Lee, S.-C., Guan, H.-H., Wang, C.-H., Huang, W.-N., Tjong, S.-C., Chen, C.-J., & Wu, W.-guey. (2005). Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of Cobra cardiotoxin A3. Journal of Biological Chemistry, 280(10), 9567–9577. https://doi.org/10.1074/jbc.m412398200
17. Hansen, A. P., Petros, A. M., Mazar, A. P., Pederson, T. M., Rueter, A., & Fesik, S. W. (1992). A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry, 31(51), 12713–12718. https://doi.org/10.1021/bi00166a001
18. Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E., & Dahlquist, F. W. (1989). [3] expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods in Enzymology, 44–73. https://doi.org/10.1016/0076-6879(89)77005-1
19. Gutiérrez, J., Calvete, J., Habib, A. et al. Snakebite envenoming. Nat Rev Dis Primers 3, 17063 (2017). https://doi.org/10.1038/nrdp.2017.63
20. Shulepko, M. A., Lyukmanova, E. N., Shenkarev, Z. O., Dubovskii, P. V., Astapova, M. V., Feofanov, A. V., Arseniev, A. S., Utkin, Y. N., Kirpichnikov, M. P., & Dolgikh, D. A. (2017). Towards universal approach for Bacterial production of three-finger Ly6/uPAR proteins: case study of Cytotoxin I from cobra N. oxiana. Protein Expression and Purification, 130, 13–20. https://doi.org/10.1016/j.pep.2016.09.021
21. Bessette, P. H., Aslund, F., Beckwith, J., & Georgiou, G. (1999). Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences, 96(24), 13703–13708. https://doi.org/10.1073/pnas.96.24.13703
22. Dubovskii, P. V., Dubinnyi, M. A., Konshina, A. G., Kazakova, E. D., Sorokoumova, G. M., Ilyasova, T. M., Shulepko, M. A., Chertkova, R. V., Lyukmanova, E. N., Dolgikh, D. A., Arseniev, A. S., & Efremov, R. G. (2017). Structural and dynamic “portraits” of recombinant and native cytotoxin I from naja oxiana: How close are they? Biochemistry, 56(34), 4468–4477. https://doi.org/10.1021/acs.biochem.7b00453
23. Kumar, T. K. S., Yang, P. W., Lin, S. H., Wu, C. Y., Lei, B., Lo, S. J., Tu, S.-C., & Yu, C. (1996). Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochemical and Biophysical Research Communications, 219(2), 450–456. https://doi.org/10.1006/bbrc.1996.0254
24. Calvete, J. J. (2011). Proteomic tools against the neglected pathology of snake bite envenoming. Expert Review of Proteomics, 8(6), 739–758. https://doi.org/10.1586/epr.11.61
25. Nozach, H., Fruchart-Gaillard, C., Fenaille, F., Beau, F., Ramos, O. H., Douzi, B., Saez, N. J., Moutiez, M., Servent, D., Gondry, M., Thaï, R., Cuniasse, P., Vincentelli, R., & Dive, V. (2013). High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microbial Cell Factories, 12(1), 37. https://doi.org/10.1186/1475-2859-12-37
26. Klint, J. K., Senff, S., Saez, N. J., Seshadri, R., Lau, H. Y., Bende, N. S., Undheim, E. A., Rash, L. D., Mobli, M., & King, G. F. (2013). Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063865
27. Kapust, R. B., & Waugh, D. S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science, 8(8), 1668–1674. https://doi.org/10.1110/ps.8.8.1668
28. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol. 2004 Dec 14;4:32. doi: 10.1186/1472-6750-4-32. PMID: 15598350; PMCID: PMC544853.
29. Thom, J. R., & Randall, L. L. (1988). Role of the leader peptide of maltose-binding protein in two steps of the export process. Journal of Bacteriology, 170(12), 5654–5661. https://doi.org/10.1128/jb.170.12.5654-5661.1988
30. Berkmen, M. (2012). Production of disulfide-bonded proteins in Escherichia coli. Protein Expression and Purification, 82(1), 240–251. https://doi.org/10.1016/j.pep.2011.10.009
31. McCarthy, A., Haebel, P., Törrönen, A. et al. (2000). Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Mol Biol 7, 196–199. https://doi.org/10.1038/73295
32. Kurokawa, Y., Yanagi, H., & Yura, T. (2000). Overexpression of Protein Disulfide isomerase DsbC stabilizes multiple-disulfide-bonded Recombinant protein produced and transported to The Periplasm in Escherichia coli. Applied and Environmental Microbiology, 66(9), 3960–3965. https://doi.org/10.1128/aem.66.9.3960-3965.2000
33. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in escherichia coli. Nature Biotechnology, 22(11), 1399–1408. https://doi.org/10.1038/nbt1029
34. Le Guennec, A., Dumez, J.-N., Giraudeau, P., & Caldarelli, S. (2015). Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling. Magnetic Resonance in Chemistry, 53(11), 913–920. https://doi.org/10.1002/mrc.4258
35. Mobli, M., Maciejewski, M. W., Schuyler, A. D., Stern, A. S., & Hoch, J. C. (2012). Sparse sampling methods in multidimensional NMR. Phys. Chem. Chem. Phys., 14(31), 10835–10843. https://doi.org/10.1039/c2cp40174f
36. Schlippenbach, T. von, Oefner, P. J., & Gronwald, W. (2018). Systematic evaluation of non-uniform sampling parameters in the targeted analysis of urine metabolites by 1H,1H 2D NMR spectroscopy. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22541-0
37. Liu, B.-S., Jiang, B.-R., Hu, K.-C., Liu, C.-H., Hsieh, W.-C., Lin, M.-H., & Sung, W.-C. (2021). Development of a broad-spectrum antiserum against Cobra Venoms using recombinant three-finger toxins. Toxins, 13(8), 556. https://doi.org/10.3390/toxins13080556
38. Marley J, Lu M, Bracken C. A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR. 2001 May;20(1):71-5. doi: 10.1023/a:1011254402785. PMID: 11430757.
39. Tropea, J. E., Cherry, S., & Waugh, D. S. (2009). Expression and purification of soluble his6-tagged TEV protease. Methods in Molecular Biology, 297–307. https://doi.org/10.1007/978-1-59745-196-3_19
40. Cavanagh, J. (2018). Protein nmr spectroscopy: Principles and practice. Academic Press.
41. Kay, L. E., Ikura, M., Tschudin, R., & Bax, A. (1990). Three-dimensional triple-resonance NMR spectroscopy of isotopically ENRICHED PROTEINS. Journal of Magnetic Resonance (1969), 89(3), 496–514. https://doi.org/10.1016/0022-2364(90)90333-5
42. Grzesiek, S., & Bax, A. (1992). Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. Journal of Magnetic Resonance (1969), 96(2), 432–440. https://doi.org/10.1016/0022-2364(92)90099-s
43. D. R. Muhandiram, Toshio Yamazaki, Brian D. Sykes, and Lewis E. Kay.Journal of the American Chemical Society (1995). Measurement of 2H T1 and T1ρ Relaxation Times in Uniformly 13C-Labeled and Fractionally 2H-Labeled Proteins in Solution. 11536-11544. DOI: 10.1021/ja00151a018
44. Farmer, B. T., Venters, R. A., Spicer, L. D., Wittekind, M. G., & Müller, L. (1992). A refocused and optimized Hnca: Increased sensitivity and resolution in large macromolecules. Journal of Biomolecular NMR, 2(2), 195–202. https://doi.org/10.1007/bf01875530
45. Holden, N. E., Coplen, T. B., Böhlke, J. K., Tarbox, L. V., Benefield, J., de Laeter, J. R., Mahaffy, P. G., O’Connor, G., Roth, E., Tepper, D. H., Walczyk, T., Wieser, M. E., & Yoneda, S. (2018). IUPAC periodic table of the elements and isotopes (IPTEI) for the Education Community (IUPAC technical report). Pure and Applied Chemistry, 90(12), 1833–2092. https://doi.org/10.1515/pac-2015-0703
46. Raran-Kurussi, S., Cherry, S., Zhang, D., & Waugh, D. S. (2017). Removal of affinity tags with TEV protease. Methods in Molecular Biology, 221–230. https://doi.org/10.1007/978-1-4939-6887-9_14
47. Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the p-type cardiotoxin with phospholipid membranes. European Journal of Biochemistry, 270(9), 2038–2046. https://doi.org/10.1046/j.1432-1033.2003.03580.x
48. Konshina, A. G., Krylov, N. A., & Efremov, R. G. (2017). Cardiotoxins: Functional role of Local conformational changes. Journal of Chemical Information and Modeling, 57(11), 2799–2810. https://doi.org/10.1021/acs.jcim.7b00395
49. Dubovskii, P., Konshina, A., & Efremov, R. (2013). Cobra Cardiotoxins: Membrane interactions and Pharmacological potential. Current Medicinal Chemistry, 21(3), 270–287. https://doi.org/10.2174/09298673113206660315
50. Chang, J.-Y., Kumar, T. K., & Yu, C. (1998). Unfolding and Refolding of Cardiotoxin III Elucidated by Reversible Conversion of the Native and Scrambled Species. Biochemistry, 37(19), 6745–6751. https://doi.org/10.1021/bi9714565
51. Sequeira, A. F., Turchetto, J., Saez, N. J., Peysson, F., Ramond, L., Duhoo, Y., Blémont, M., Fernandes, V. O., Gama, L. T., Ferreira, L. M., Guerreiro, C. I., Gilles, N., Darbon, H., Fontes, C. M., & Vincentelli, R. (2017). Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microbial Cell Factories, 16(1). https://doi.org/10.1186/s12934-016-0618-0
52. Alangode, A., Rajan, K., & Nair, B. G. (2020). Snake antivenom: Challenges and alternate approaches. Biochemical Pharmacology, 181, 114135. https://doi.org/10.1016/j.bcp.2020.114135
53. Derakhshani, A., Silvestris, N., Hemmat, N., Asadzadeh, Z., Abdoli Shadbad, M., Nourbakhsh, N. S., Mobasheri, L., Vahedi, P., Shahmirzaie, M., Brunetti, O., Safarpour, H., & Baradaran, B. (2020). Targeting TGF-β-mediated SMAD signaling pathway via novel recombinant cytotoxin II: A potent protein from Naja Naja oxiana venom in melanoma. Molecules, 25(21), 5148. https://doi.org/10.3390/molecules25215148
54. Sequeira, A. F., Turchetto, J., Saez, N. J., Peysson, F., Ramond, L., Duhoo, Y., Blémont, M., Fernandes, V. O., Gama, L. T., Ferreira, L. M., Guerreiro, C. I., Gilles, N., Darbon, H., Fontes, C. M., & Vincentelli, R. (2017). Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microbial Cell Factories, 16(1). https://doi.org/10.1186/s12934-016-0618-0 54
55. Pan, J. L., & Bardwell, J. C. A. (2006). The origami of thioredoxin-like folds. Protein Science, 15(10), 2217–2227. https://doi.org/10.1110/ps.062268106
56. Derakhshani, A., Silvestris, N., Hajiasgharzadeh, K., Mahmoudzadeh, S., Fereidouni, M., Paradiso, A. V., Brunetti, O., Atarod, D., Safarpour, H., & Baradaran, B. (2020). Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: A potential treatment for breast cancer. International Journal of Biological Macromolecules, 162, 1283–1292. https://doi.org/10.1016/j.ijbiomac.2020.06.130
57. Hickey, C. M., Wilson, N. R., & Hochstrasser, M. (2012). Function and regulation of sumo proteases. Nature Reviews Molecular Cell Biology, 13(12), 755-766. doi:10.1038/nrm3478
58. de la Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X., López-Vera, E., & Corzo, G. (2018). Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids, 50(7), 885–895. https://doi.org/10.1007/s00726-018-2556-0
59. Markland, F. S. (1998). Snake venoms and the hemostatic system. Toxicon, 36(12), 1749–1800. https://doi.org/10.1016/s0041-0101(98)00126-3
60. Calvete, J. J., Juárez, P., & Sanz, L. (2007). Snake venomics. strategy and applications. Journal of Mass Spectrometry, 42(11), 1405–1414. https://doi.org/10.1002/jms.1242
61. Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 56(6), 855–867. https://doi.org/10.1016/j.toxicon.2010.07.010
62. Pineda, S. S., Chin, Y. K.-Y., Undheim, E. A. B., Senff, S., Mobli, M., Dauly, C., Escoubas, P., Nicholson, G. M., Kaas, Q., Mattick, J. S., & King, G. F. (2018). Structural venomics: Evolution of a complex chemical arsenal by massive duplication and neofunctionalization of a single ancestral fold. https://doi.org/10.1101/485722
63. Fry, B. G., Vidal, N., Norman, J. A., Vonk, F. J., Scheib, H., Ramjan, S. F., Kuruppu, S., Fung, K., Blair Hedges, S., Richardson, M. K., Hodgson, W. C., Ignjatovic, V., Summerhayes, R., & Kochva, E. (2005). Early evolution of the venom system in lizards and snakes. Nature, 439(7076), 584–588. https://doi.org/10.1038/nature04328
64. Utkin, Y. N. (2019). Last decade update for three-finger toxins: Newly emerging structures and biological activities. World Journal of Biological Chemistry, 10(1), 17–27. https://doi.org/10.4331/wjbc.v10.i1.17
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *