|
1. World Health Organization. Snakebite envenoming. World Health Organization. (https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming, accessed 17 August 2021) 2. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: World Health Organization; 2017 (https://www.who.int/snakebites/resources/Snake_antivenom_immunoglobulins_WHO_TRS1004_Annex5.pdf?ua=1, accessed 14 August 2021). 3. Moroz-Perlmutter, C., Goldblum, N., De Vries, A., & Gitter, S. (1963). Detoxification of snake venoms and venom fractions by formaldehyde. Experimental Biology and Medicine, 112(3), 595–598. https://doi.org/10.3181/00379727-112-28113 4. C̆urin-S̆erbec Vladka, Délot, E., Faure, G., Saliou, B., Gubenšek, F., Bon, C., & Choumet, V. (1994). Antipeptide antibodies directed to the C-terminal part of ammodytoxin a react with the PLA2 subunit of crotoxin and neutralize its pharmacological activity. Toxicon, 32(11), 1337–1348. https://doi.org/10.1016/0041-0101(94)90406-5 5. Ferreira, R. N., Machado de Avila, R. A., Sanchez, E. F., Maria, W. S., Molina, F., Granier, C., & Chávez-Olórtegui, C. (2006). Antibodies against synthetic epitopes inhibit the enzymatic activity of mutalysin II, a metalloproteinase from bushmaster snake venom. Toxicon, 48(8), 1098–1103. https://doi.org/10.1016/j.toxicon.2006.07.040 6. Dolimbek, B. Z., & Zouhair Atassi, M. (1996). Protection against α-bungarotoxin poisoning by immunization with synthetic toxin peptides. Molecular Immunology, 33(7-8), 681–689. https://doi.org/10.1016/0161-5890(96)00014-4 7. de la Rosa, G., Olvera, F., Archundia, I. G., Lomonte, B., Alagón, A., & Corzo, G. (2019). Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11639-2 8. Ramos, H. R., Junqueira-de-Azevedo, I. de, Novo, J. B., Castro, K., Duarte, C. G., Machado-de-Ávila, R. A., Chavez-Olortegui, C., & Ho, P. L. (2016). A heterologous Multiepitope DNA Prime/Recombinant Protein Boost immunisation strategy for the development of an antiserum against micrurus Corallinus (coral Snake) Venom. PLOS Neglected Tropical Diseases, 10(3). https://doi.org/10.1371/journal.pntd.0004484 9. Liu, C.-C., Chou, Y.-S., Chen, C.-Y., Liu, K.-L., Huang, G.-J., Yu, J.-S., Wu, C.-J., Liaw, G.-W., Hsieh, C.-H., & Chen, C.-K. (2020). Pathogenesis of local necrosis induced by Naja Atra venom: Assessment of the neutralization ability of taiwanese freeze-dried Neurotoxic antivenom in animal models. PLOS Neglected Tropical Diseases, 14(2). https://doi.org/10.1371/journal.pntd.0008054 10. Hung, D.-Z. (2004). Taiwan’s venomous snakebite: Epidemiological, evolution and geographic differences. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(2), 96–101. https://doi.org/10.1016/s0035-9203(03)00013-0 11. Chang, K.-P., Lai, C.-S., & Lin, S.-D. (2007). Management of poisonous snake bites in Southern Taiwan. The Kaohsiung Journal of Medical Sciences, 23(10), 511–518. https://doi.org/10.1016/s1607-551x(08)70009-3 12. Mao, Y.-C., Liu, P.-Y., Chiang, L.-C., Lai, C.-S., Lai, K.-L., Ho, C.-H., Wang, T.-H., & Yang, C.-C. (2017). Naja atra snakebite in Taiwan. Clinical Toxicology, 56(4), 273–280. https://doi.org/10.1080/15563650.2017.1366502 13. Yang, S.-H., Chien, C.-M., Lu, M.-C., Lin, Y.-H., Hu, X.-W., & Lin, S.-R. (2006). Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Experimental & Molecular Medicine, 38(4), 435–444. https://doi.org/10.1038/emm.2006.51 14. Wang, C.-H., & Wu, W.-guey. (2005). Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Letters, 579(14), 3169–3174. https://doi.org/10.1016/j.febslet.2005.05.006 15. Wu, P.-L., Chiu, C.-R., Huang, W.-N., & Wu, W.-G. (2012). The role of sulfatide lipid domains in the membrane pore-forming activity of Cobra cardiotoxin. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1818(5), 1378–1385. https://doi.org/10.1016/j.bbamem.2012.02.018 16. Lee, S.-C., Guan, H.-H., Wang, C.-H., Huang, W.-N., Tjong, S.-C., Chen, C.-J., & Wu, W.-guey. (2005). Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of Cobra cardiotoxin A3. Journal of Biological Chemistry, 280(10), 9567–9577. https://doi.org/10.1074/jbc.m412398200 17. Hansen, A. P., Petros, A. M., Mazar, A. P., Pederson, T. M., Rueter, A., & Fesik, S. W. (1992). A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry, 31(51), 12713–12718. https://doi.org/10.1021/bi00166a001 18. Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E., & Dahlquist, F. W. (1989). [3] expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods in Enzymology, 44–73. https://doi.org/10.1016/0076-6879(89)77005-1 19. Gutiérrez, J., Calvete, J., Habib, A. et al. Snakebite envenoming. Nat Rev Dis Primers 3, 17063 (2017). https://doi.org/10.1038/nrdp.2017.63 20. Shulepko, M. A., Lyukmanova, E. N., Shenkarev, Z. O., Dubovskii, P. V., Astapova, M. V., Feofanov, A. V., Arseniev, A. S., Utkin, Y. N., Kirpichnikov, M. P., & Dolgikh, D. A. (2017). Towards universal approach for Bacterial production of three-finger Ly6/uPAR proteins: case study of Cytotoxin I from cobra N. oxiana. Protein Expression and Purification, 130, 13–20. https://doi.org/10.1016/j.pep.2016.09.021 21. Bessette, P. H., Aslund, F., Beckwith, J., & Georgiou, G. (1999). Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences, 96(24), 13703–13708. https://doi.org/10.1073/pnas.96.24.13703 22. Dubovskii, P. V., Dubinnyi, M. A., Konshina, A. G., Kazakova, E. D., Sorokoumova, G. M., Ilyasova, T. M., Shulepko, M. A., Chertkova, R. V., Lyukmanova, E. N., Dolgikh, D. A., Arseniev, A. S., & Efremov, R. G. (2017). Structural and dynamic “portraits” of recombinant and native cytotoxin I from naja oxiana: How close are they? Biochemistry, 56(34), 4468–4477. https://doi.org/10.1021/acs.biochem.7b00453 23. Kumar, T. K. S., Yang, P. W., Lin, S. H., Wu, C. Y., Lei, B., Lo, S. J., Tu, S.-C., & Yu, C. (1996). Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochemical and Biophysical Research Communications, 219(2), 450–456. https://doi.org/10.1006/bbrc.1996.0254 24. Calvete, J. J. (2011). Proteomic tools against the neglected pathology of snake bite envenoming. Expert Review of Proteomics, 8(6), 739–758. https://doi.org/10.1586/epr.11.61 25. Nozach, H., Fruchart-Gaillard, C., Fenaille, F., Beau, F., Ramos, O. H., Douzi, B., Saez, N. J., Moutiez, M., Servent, D., Gondry, M., Thaï, R., Cuniasse, P., Vincentelli, R., & Dive, V. (2013). High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microbial Cell Factories, 12(1), 37. https://doi.org/10.1186/1475-2859-12-37 26. Klint, J. K., Senff, S., Saez, N. J., Seshadri, R., Lau, H. Y., Bende, N. S., Undheim, E. A., Rash, L. D., Mobli, M., & King, G. F. (2013). Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063865 27. Kapust, R. B., & Waugh, D. S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science, 8(8), 1668–1674. https://doi.org/10.1110/ps.8.8.1668 28. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol. 2004 Dec 14;4:32. doi: 10.1186/1472-6750-4-32. PMID: 15598350; PMCID: PMC544853. 29. Thom, J. R., & Randall, L. L. (1988). Role of the leader peptide of maltose-binding protein in two steps of the export process. Journal of Bacteriology, 170(12), 5654–5661. https://doi.org/10.1128/jb.170.12.5654-5661.1988 30. Berkmen, M. (2012). Production of disulfide-bonded proteins in Escherichia coli. Protein Expression and Purification, 82(1), 240–251. https://doi.org/10.1016/j.pep.2011.10.009 31. McCarthy, A., Haebel, P., Törrönen, A. et al. (2000). Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Mol Biol 7, 196–199. https://doi.org/10.1038/73295 32. Kurokawa, Y., Yanagi, H., & Yura, T. (2000). Overexpression of Protein Disulfide isomerase DsbC stabilizes multiple-disulfide-bonded Recombinant protein produced and transported to The Periplasm in Escherichia coli. Applied and Environmental Microbiology, 66(9), 3960–3965. https://doi.org/10.1128/aem.66.9.3960-3965.2000 33. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in escherichia coli. Nature Biotechnology, 22(11), 1399–1408. https://doi.org/10.1038/nbt1029 34. Le Guennec, A., Dumez, J.-N., Giraudeau, P., & Caldarelli, S. (2015). Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling. Magnetic Resonance in Chemistry, 53(11), 913–920. https://doi.org/10.1002/mrc.4258 35. Mobli, M., Maciejewski, M. W., Schuyler, A. D., Stern, A. S., & Hoch, J. C. (2012). Sparse sampling methods in multidimensional NMR. Phys. Chem. Chem. Phys., 14(31), 10835–10843. https://doi.org/10.1039/c2cp40174f 36. Schlippenbach, T. von, Oefner, P. J., & Gronwald, W. (2018). Systematic evaluation of non-uniform sampling parameters in the targeted analysis of urine metabolites by 1H,1H 2D NMR spectroscopy. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22541-0 37. Liu, B.-S., Jiang, B.-R., Hu, K.-C., Liu, C.-H., Hsieh, W.-C., Lin, M.-H., & Sung, W.-C. (2021). Development of a broad-spectrum antiserum against Cobra Venoms using recombinant three-finger toxins. Toxins, 13(8), 556. https://doi.org/10.3390/toxins13080556 38. Marley J, Lu M, Bracken C. A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR. 2001 May;20(1):71-5. doi: 10.1023/a:1011254402785. PMID: 11430757. 39. Tropea, J. E., Cherry, S., & Waugh, D. S. (2009). Expression and purification of soluble his6-tagged TEV protease. Methods in Molecular Biology, 297–307. https://doi.org/10.1007/978-1-59745-196-3_19 40. Cavanagh, J. (2018). Protein nmr spectroscopy: Principles and practice. Academic Press. 41. Kay, L. E., Ikura, M., Tschudin, R., & Bax, A. (1990). Three-dimensional triple-resonance NMR spectroscopy of isotopically ENRICHED PROTEINS. Journal of Magnetic Resonance (1969), 89(3), 496–514. https://doi.org/10.1016/0022-2364(90)90333-5 42. Grzesiek, S., & Bax, A. (1992). Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. Journal of Magnetic Resonance (1969), 96(2), 432–440. https://doi.org/10.1016/0022-2364(92)90099-s 43. D. R. Muhandiram, Toshio Yamazaki, Brian D. Sykes, and Lewis E. Kay.Journal of the American Chemical Society (1995). Measurement of 2H T1 and T1ρ Relaxation Times in Uniformly 13C-Labeled and Fractionally 2H-Labeled Proteins in Solution. 11536-11544. DOI: 10.1021/ja00151a018 44. Farmer, B. T., Venters, R. A., Spicer, L. D., Wittekind, M. G., & Müller, L. (1992). A refocused and optimized Hnca: Increased sensitivity and resolution in large macromolecules. Journal of Biomolecular NMR, 2(2), 195–202. https://doi.org/10.1007/bf01875530 45. Holden, N. E., Coplen, T. B., Böhlke, J. K., Tarbox, L. V., Benefield, J., de Laeter, J. R., Mahaffy, P. G., O’Connor, G., Roth, E., Tepper, D. H., Walczyk, T., Wieser, M. E., & Yoneda, S. (2018). IUPAC periodic table of the elements and isotopes (IPTEI) for the Education Community (IUPAC technical report). Pure and Applied Chemistry, 90(12), 1833–2092. https://doi.org/10.1515/pac-2015-0703 46. Raran-Kurussi, S., Cherry, S., Zhang, D., & Waugh, D. S. (2017). Removal of affinity tags with TEV protease. Methods in Molecular Biology, 221–230. https://doi.org/10.1007/978-1-4939-6887-9_14 47. Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the p-type cardiotoxin with phospholipid membranes. European Journal of Biochemistry, 270(9), 2038–2046. https://doi.org/10.1046/j.1432-1033.2003.03580.x 48. Konshina, A. G., Krylov, N. A., & Efremov, R. G. (2017). Cardiotoxins: Functional role of Local conformational changes. Journal of Chemical Information and Modeling, 57(11), 2799–2810. https://doi.org/10.1021/acs.jcim.7b00395 49. Dubovskii, P., Konshina, A., & Efremov, R. (2013). Cobra Cardiotoxins: Membrane interactions and Pharmacological potential. Current Medicinal Chemistry, 21(3), 270–287. https://doi.org/10.2174/09298673113206660315 50. Chang, J.-Y., Kumar, T. K., & Yu, C. (1998). Unfolding and Refolding of Cardiotoxin III Elucidated by Reversible Conversion of the Native and Scrambled Species. Biochemistry, 37(19), 6745–6751. https://doi.org/10.1021/bi9714565 51. Sequeira, A. F., Turchetto, J., Saez, N. J., Peysson, F., Ramond, L., Duhoo, Y., Blémont, M., Fernandes, V. O., Gama, L. T., Ferreira, L. M., Guerreiro, C. I., Gilles, N., Darbon, H., Fontes, C. M., & Vincentelli, R. (2017). Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microbial Cell Factories, 16(1). https://doi.org/10.1186/s12934-016-0618-0 52. Alangode, A., Rajan, K., & Nair, B. G. (2020). Snake antivenom: Challenges and alternate approaches. Biochemical Pharmacology, 181, 114135. https://doi.org/10.1016/j.bcp.2020.114135 53. Derakhshani, A., Silvestris, N., Hemmat, N., Asadzadeh, Z., Abdoli Shadbad, M., Nourbakhsh, N. S., Mobasheri, L., Vahedi, P., Shahmirzaie, M., Brunetti, O., Safarpour, H., & Baradaran, B. (2020). Targeting TGF-β-mediated SMAD signaling pathway via novel recombinant cytotoxin II: A potent protein from Naja Naja oxiana venom in melanoma. Molecules, 25(21), 5148. https://doi.org/10.3390/molecules25215148 54. Sequeira, A. F., Turchetto, J., Saez, N. J., Peysson, F., Ramond, L., Duhoo, Y., Blémont, M., Fernandes, V. O., Gama, L. T., Ferreira, L. M., Guerreiro, C. I., Gilles, N., Darbon, H., Fontes, C. M., & Vincentelli, R. (2017). Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microbial Cell Factories, 16(1). https://doi.org/10.1186/s12934-016-0618-0 54 55. Pan, J. L., & Bardwell, J. C. A. (2006). The origami of thioredoxin-like folds. Protein Science, 15(10), 2217–2227. https://doi.org/10.1110/ps.062268106 56. Derakhshani, A., Silvestris, N., Hajiasgharzadeh, K., Mahmoudzadeh, S., Fereidouni, M., Paradiso, A. V., Brunetti, O., Atarod, D., Safarpour, H., & Baradaran, B. (2020). Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: A potential treatment for breast cancer. International Journal of Biological Macromolecules, 162, 1283–1292. https://doi.org/10.1016/j.ijbiomac.2020.06.130 57. Hickey, C. M., Wilson, N. R., & Hochstrasser, M. (2012). Function and regulation of sumo proteases. Nature Reviews Molecular Cell Biology, 13(12), 755-766. doi:10.1038/nrm3478 58. de la Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X., López-Vera, E., & Corzo, G. (2018). Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids, 50(7), 885–895. https://doi.org/10.1007/s00726-018-2556-0 59. Markland, F. S. (1998). Snake venoms and the hemostatic system. Toxicon, 36(12), 1749–1800. https://doi.org/10.1016/s0041-0101(98)00126-3 60. Calvete, J. J., Juárez, P., & Sanz, L. (2007). Snake venomics. strategy and applications. Journal of Mass Spectrometry, 42(11), 1405–1414. https://doi.org/10.1002/jms.1242 61. Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 56(6), 855–867. https://doi.org/10.1016/j.toxicon.2010.07.010 62. Pineda, S. S., Chin, Y. K.-Y., Undheim, E. A. B., Senff, S., Mobli, M., Dauly, C., Escoubas, P., Nicholson, G. M., Kaas, Q., Mattick, J. S., & King, G. F. (2018). Structural venomics: Evolution of a complex chemical arsenal by massive duplication and neofunctionalization of a single ancestral fold. https://doi.org/10.1101/485722 63. Fry, B. G., Vidal, N., Norman, J. A., Vonk, F. J., Scheib, H., Ramjan, S. F., Kuruppu, S., Fung, K., Blair Hedges, S., Richardson, M. K., Hodgson, W. C., Ignjatovic, V., Summerhayes, R., & Kochva, E. (2005). Early evolution of the venom system in lizards and snakes. Nature, 439(7076), 584–588. https://doi.org/10.1038/nature04328 64. Utkin, Y. N. (2019). Last decade update for three-finger toxins: Newly emerging structures and biological activities. World Journal of Biological Chemistry, 10(1), 17–27. https://doi.org/10.4331/wjbc.v10.i1.17
|