|
1. 衛生福利部統計處 (2022). 110年死因統計年報. 2. Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J., and Siegel, R.L. (2022). Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 10.3322/caac.21731. 3. Maurizi, G., D’Andrilli, A., Ciccone, A.M., Ibrahim, M., Andreetti, C., Tierno, S., Poggi, C., Menna, C., Venuta, F., and Rendina, E.A. (2015). Margin Distance Does Not Influence Recurrence and Survival After Wedge Resection for Lung Cancer. The Annals of Thoracic Surgery 100, 918-925. 10.1016/j.athoracsur.2015.04.064. 4. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648. 10.1038/367645a0. 5. Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3, 730-737. 10.1038/nm0797-730. 6. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 100, 3983-3988. 10.1073/pnas.0530291100. 7. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401. 10.1038/nature03128. 8. Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., Xu, X., Elder, D.E., and Herlyn, M. (2005). A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Research 65, 9328-9337. 10.1158/0008-5472.can-05-1343. 9. Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side Population in Human Lung Cancer Cell Lines and Tumors Is Enriched with Stem-like Cancer Cells. Cancer Research 67, 4827-4833. 10.1158/0008-5472.can-06-3557. 10. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C., and De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation 15, 504-514. 10.1038/sj.cdd.4402283. 11. Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine 17, 313-319. 10.1038/nm.2304. 12. Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., et al. (2008). Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy. JNCI Journal of the National Cancer Institute 100, 672-679. 10.1093/jnci/djn123. 13. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760. 10.1038/nature05236. 14. Charrad, R.-S., Li, Y., Delpech, B., Balitrand, N., Clay, D., Jasmin, C., Chomienne, C., and Smadja-Joffe, F. (1999). Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nature Medicine 5, 669-676. 10.1038/9518. 15. Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., and Clarke, R.B. (2010). Regulation of Breast Cancer Stem Cell Activity by Signaling through the Notch4 Receptor. Cancer Research 70, 709-718. 10.1158/0008-5472.can-09-1681. 16. M, Ruby, Rebecca, and Jean (2016). EMT: 2016. Cell 166, 21-45. 10.1016/j.cell.2016.06.028. 17. Buckley, C.E., and St Johnston, D. (2022). Apical–basal polarity and the control of epithelial form and function. Nature Reviews Molecular Cell Biology. 10.1038/s41580-022-00465-y. 18. Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890. 10.1016/j.cell.2009.11.007. 19. Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology 14, 611-629. 10.1038/nrclinonc.2017.44. 20. Birchmeier, W., and Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198, 11-26. 10.1016/0304-419x(94)90003-5. 21. Blanco, M.J., Moreno-Bueno, G., Sarrio, D., Locascio, A., Cano, A., Palacios, J., and Nieto, M.A. (2002). Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241-3246. 10.1038/sj.onc.1205416. 22. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell 117, 927-939. 10.1016/j.cell.2004.06.006. 23. Papageorgis, P. (2015). TGFβSignaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Journal of Oncology 2015, 1-15. 10.1155/2015/587193. 24. Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., Del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology 2, 76-83. 10.1038/35000025. 25. O'Brien-Ball, C., and Biddle, A. (2017). Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 430, 266-274. 10.1016/j.ydbio.2017.07.025. 26. Reid, P.A., Wilson, P., Li, Y., Marcu, L.G., and Bezak, E. (2017). Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head & Neck 39, 1920-1932. 10.1002/hed.24848. 27. Mani, S.A., Guo, W., Liao, M.-J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133, 704-715. 10.1016/j.cell.2008.03.027. 28. Morel, A.-P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., and Puisieux, A. (2008). Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. PLoS ONE 3, e2888. 10.1371/journal.pone.0002888. 29. Bakris, G.L., Fonseca, V.A., Sharma, K., and Wright, E.M. (2009). Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75, 1272-1277. 10.1038/ki.2009.87. 30. Wright, E.M., Loo, D.D., Hirayama, B.A., and Turk, E. (2004). Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19, 370-376. 10.1152/physiol.00026.2004. 31. Wright, E.M., Loo, D.D., and Hirayama, B.A. (2011). Biology of human sodium glucose transporters. Physiol Rev 91, 733-794. 10.1152/physrev.00055.2009. 32. Rieg, T., Masuda, T., Gerasimova, M., Mayoux, E., Platt, K., Powell, D.R., Thomson, S.C., Koepsell, H., and Vallon, V. (2014). Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306, F188-193. 10.1152/ajprenal.00518.2013. 33. Ehrenkranz, J.R.L., Lewis, N.G., Ronald Kahn, C., and Roth, J. (2005). Phlorizin: a review. Diabetes/Metabolism Research and Reviews 21, 31-38. 10.1002/dmrr.532. 34. Rossetti, L., Smith, D., Shulman, G.I., Papachristou, D., and Defronzo, R.A. (1987). Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. Journal of Clinical Investigation 79, 1510-1515. 10.1172/jci112981. 35. Cowie, M.R., and Fisher, M. (2020). SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17, 761-772. 10.1038/s41569-020-0406-8. 36. Scheen, A.J. (2015). Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs 75, 33-59. 10.1007/s40265-014-0337-y. 37. Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J., et al. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine 373, 2117-2128. 10.1056/nejmoa1504720. 38. Neal, B., Perkovic, V., Mahaffey, K.W., De Zeeuw, D., Fulcher, G., Erondu, N., Shaw, W., Law, G., Desai, M., and Matthews, D.R. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine 377, 644-657. 10.1056/nejmoa1611925. 39. Emerging Risk Factors, C., Sarwar, N., Gao, P., Seshasai, S.R., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D.A., Selvin, E., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215-2222. 10.1016/S0140-6736(10)60484-9. 40. Vasilakou, D., Karagiannis, T., Athanasiadou, E., Mainou, M., Liakos, A., Bekiari, E., Sarigianni, M., Matthews, D.R., and Tsapas, A. (2013). Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159, 262-274. 10.7326/0003-4819-159-4-201308200-00007. 41. Storgaard, H., Gluud, L.L., Bennett, C., Grøndahl, M.F., Christensen, M.B., Knop, F.K., and Vilsbøll, T. (2016). Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLOS ONE 11, e0166125. 10.1371/journal.pone.0166125. 42. Wanner, C., Inzucchi, S.E., Lachin, J.M., Fitchett, D., Von Eynatten, M., Mattheus, M., Johansen, O.E., Woerle, H.J., Broedl, U.C., and Zinman, B. (2016). Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. New England Journal of Medicine 375, 323-334. 10.1056/nejmoa1515920. 43. Thwaini, A. (2006). Fournier's gangrene and its emergency management. Postgraduate Medical Journal 82, 516-519. 10.1136/pgmj.2005.042069. 44. Hu, Y., Bai, Z., Tang, Y., Liu, R., Zhao, B., Gong, J., and Mei, D. (2020). Fournier Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Pharmacovigilance Study with Data from the U.S. FDA Adverse Event Reporting System. J Diabetes Res 2020, 3695101. 10.1155/2020/3695101. 45. 衛生福利部食品藥物管理署 (2018). SGLT2抑制劑類藥品安全資訊風險溝通表(FDA藥字第1071408505號). http://tcpa.taiwan-pharma.org.tw/node/32274. 46. Administration, U.S.F.a.D. (2018). FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrences-serious-infection-genital-area-sglt2-inhibitors-diabetes. 47. Kaji, K., Nishimura, N., Seki, K., Sato, S., Saikawa, S., Nakanishi, K., Furukawa, M., Kawaratani, H., Kitade, M., Moriya, K., et al. (2018). Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. International Journal of Cancer 142, 1712-1722. 10.1002/ijc.31193. 48. Jojima, T., Wakamatsu, S., Kase, M., Iijima, T., Maejima, Y., Shimomura, K., Kogai, T., Tomaru, T., Usui, I., and Aso, Y. (2019). The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci 20. 10.3390/ijms20205237. 49. Zhou, J., Zhu, J., Yu, S.J., Ma, H.L., Chen, J., Ding, X.F., Chen, G., Liang, Y., and Zhang, Q. (2020). Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother 132, 110821. 10.1016/j.biopha.2020.110821. 50. Xie, Z., Wang, F., Lin, L., Duan, S., Liu, X., Li, X., Li, T., Xue, M., Cheng, Y., Ren, H., and Zhu, Y. (2020). An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Lett 495, 200-210. 10.1016/j.canlet.2020.09.005. 51. Chang, Y.-W., Su, Y.-J., Hsiao, M., Wei, K.-C., Lin, W.-H., Liang, C.-J., Chen, S.-C., and Lee, J.-L. (2015). Diverse Targets of β-Catenin during the Epithelial–Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse. Cancer Research 75, 3398-3410. 10.1158/0008-5472.can-14-3265. 52. Lin, W.-H., Chang, Y.-W., Hong, M.-X., Hsu, T.-C., Lee, K.-C., Lin, C., and Lee, J.-L. (2021). STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene 40, 791-805. 10.1038/s41388-020-01566-8. 53. Hsieh, T.-L. (2021). The role of Integrin β4 in regulating the epithelial to mesenchymal transition and cancer stemness in lung cancer. Master (National Tsing Hua University). 54. Wang, Y.-T. (2021). Biology and applications of small nucleolar RNA SNORD46 in defining lung cancer stem cells. Master (National Tsing Hua University). 55. Wang, Y., Yang, L., Mao, L., Zhang, L., Zhu, Y., Xu, Y., Cheng, Y., Sun, R., Zhang, Y., Ke, J., and Zhao, D. (2022). SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int 22, 74. 10.1186/s12935-022-02496-z. 56. Su, Y.J., Lin, W.H., Chang, Y.W., Wei, K.C., Liang, C.L., Chen, S.C., and Lee, J.L. (2015). Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3beta/beta-catenin signaling required for maintenance of cancer stem cell properties. Oncotarget 6, 38029-38045. 10.18632/oncotarget.5703. 57. Nieman, M.T., Prudoff, R.S., Johnson, K.R., and Wheelock, M.J. (1999). N-Cadherin Promotes Motility in Human Breast Cancer Cells Regardless of Their E-Cadherin Expression. Journal of Cell Biology 147, 631-644. 10.1083/jcb.147.3.631. 58. Wu, W., Zhang, Z., Jing, D., Huang, X., Ren, D., Shao, Z., and Zhang, Z. (2022). SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death & Disease 13. 10.1038/s41419-022-04980-w.
|