帳號:guest(3.145.82.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂沛賢
作者(外文):Lu, Pei-Shien
論文名稱(中文):第二型鈉葡萄糖轉運蛋白抑制劑可抑制肺癌幹細胞的上皮間質轉化和癌幹特性
論文名稱(外文):An SGLT2 inhibitor, a novel class of antidiabetic agent, can decrease EMT and cancer stemness for lung cancer therapy
指導教授(中文):李佳霖
指導教授(外文):Lee, Jia-Lin
口試委員(中文):張壯榮
陳功深
口試委員(外文):Chang, Chuang-Rung
Chen, Gong-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:109080529
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:51
中文關鍵詞:SGLT2抑制劑癌症幹細胞上皮-間質轉換肺癌癌症幹性
外文關鍵詞:SGLT2 inhibitorlung cancercancer stem cellepithelial–mesenchymal transitioncancer stemnessAkt/Gsk-3β pathway
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
第二型鈉葡萄糖轉運蛋白抑制劑(SGLT2i)為一類可以抑制葡萄糖經由腎臟再吸收回血管,藉此降低血糖的新型降血糖藥物。近期研究發現SGLT2i除了調節血糖的功能外,可能具有抗癌的作用。文獻指出SGLT2i對不同種類癌細胞具有抑制細胞增殖,移動能力以及促進細胞凋亡等效果,但是目前尚未有研究表明SGLT2i是否會影響癌細胞的轉移能力。因此我們將肺癌幹細胞以恩排糖(Empagliflozin)處理以了解SGLT2i對癌細胞轉移能力的影響。
從結果發現,恩排糖能夠過抑制上皮間質轉換(epithelial-mesenchymal transition, EMT)相關基因以抑制肺癌幹細胞的上皮間質轉換。接著再透過傷口癒合試驗(Wound healing assay)觀察到恩排糖也會降低肺癌幹細胞的移動能力。此外結果也發現恩排糖可以降低代表肺癌幹細胞特性(stemness)的基因,以及細胞幹性的相關基因表現。以球形成試驗(Sphere-forming assay)測試也發現恩排糖會降低肺癌幹細胞形成球體的能力。最後分析恩排糖影響的蛋白質表現情形發現,恩排糖會降低Akt/GSK3β/β-catenin路徑相關蛋白的表現量,進而降低與EMT和stemness相關轉錄因子Twist1和Snail表現量而達到抑制效果。總結上述結果,恩排糖可以透過調控Akt/GSK3β/β-catenin路徑,降低EMT和stemness相關轉錄因子,進而降低相關功能表現。
Sodium-glucose transporter-2 inhibitors (SGLT2i) are a class of antidiabetic drugs that could inhibit glucose reabsorption from the proximal tubule and lower glucose levels in blood. Besides its hypoglycaemic effects, recent studies reveal that SGLT2i may have the potential to become novel anticancer therapies. Some evidence has shown that SGLT2i can inhibit proliferation and migration and induce apoptosis in different cancer cells, but SGLT2i effect on cancer metastasis remains unclear.
To investigate the impact of SGLT2i in cancer metastasis, we treated lung cancer stem cells with Empagliflozin, an SGLT2i, to examine its influence on cancer metastasis.
Our result shows that Empagliflozin can inhibit epithelial-mesenchymal transition (EMT) by decreasing the expression of related genes. In addition, we performed wound-healing assay, and the result also showed that Empagliflozin could impair the migration ability of lung cancer cells. We also found that Empagliflozin can suppress cancer stemness by downregulating lung cancer stem cell markers CD44 and CD133, along with other stemness-related genes. The sphere-forming assay also demonstrates that Empagliflozin can attenuate the sphere-forming ability of lung cancer stem cells, which correlated with previous results. Last, we found that Empagliflozin can inhibit the expression of Akt/GSK3β/β-catenin axis-related protein in lung cancer stem cells.
Our results suggest that Empagliflozin downregulates EMT and stemness-related genes in lung cancer stem cells by downregulating the Akt/GSK3β/β-catenin axis, which indicates that SGLT2i may serve as a potential therapeutic for lung cancers.
Contents v
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 10
Chapter 3. Results 17
Chapter 4. Discussion 23
Chapter 5. Tables and Figures 29
Chapter 6. Reference 40

1. 衛生福利部統計處 (2022). 110年死因統計年報.
2. Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J., and Siegel, R.L. (2022). Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 10.3322/caac.21731.
3. Maurizi, G., D’Andrilli, A., Ciccone, A.M., Ibrahim, M., Andreetti, C., Tierno, S., Poggi, C., Menna, C., Venuta, F., and Rendina, E.A. (2015). Margin Distance Does Not Influence Recurrence and Survival After Wedge Resection for Lung Cancer. The Annals of Thoracic Surgery 100, 918-925. 10.1016/j.athoracsur.2015.04.064.
4. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648. 10.1038/367645a0.
5. Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3, 730-737. 10.1038/nm0797-730.
6. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 100, 3983-3988. 10.1073/pnas.0530291100.
7. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401. 10.1038/nature03128.
8. Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., Xu, X., Elder, D.E., and Herlyn, M. (2005). A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Research 65, 9328-9337. 10.1158/0008-5472.can-05-1343.
9. Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side Population in Human Lung Cancer Cell Lines and Tumors Is Enriched with Stem-like Cancer Cells. Cancer Research 67, 4827-4833. 10.1158/0008-5472.can-06-3557.
10. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C., and De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation 15, 504-514. 10.1038/sj.cdd.4402283.
11. Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine 17, 313-319. 10.1038/nm.2304.
12. Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., et al. (2008). Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy. JNCI Journal of the National Cancer Institute 100, 672-679. 10.1093/jnci/djn123.
13. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760. 10.1038/nature05236.
14. Charrad, R.-S., Li, Y., Delpech, B., Balitrand, N., Clay, D., Jasmin, C., Chomienne, C., and Smadja-Joffe, F. (1999). Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nature Medicine 5, 669-676. 10.1038/9518.
15. Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., and Clarke, R.B. (2010). Regulation of Breast Cancer Stem Cell Activity by Signaling through the Notch4 Receptor. Cancer Research 70, 709-718. 10.1158/0008-5472.can-09-1681.
16. M, Ruby, Rebecca, and Jean (2016). EMT: 2016. Cell 166, 21-45. 10.1016/j.cell.2016.06.028.
17. Buckley, C.E., and St Johnston, D. (2022). Apical–basal polarity and the control of epithelial form and function. Nature Reviews Molecular Cell Biology. 10.1038/s41580-022-00465-y.
18. Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890. 10.1016/j.cell.2009.11.007.
19. Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology 14, 611-629. 10.1038/nrclinonc.2017.44.
20. Birchmeier, W., and Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198, 11-26. 10.1016/0304-419x(94)90003-5.
21. Blanco, M.J., Moreno-Bueno, G., Sarrio, D., Locascio, A., Cano, A., Palacios, J., and Nieto, M.A. (2002). Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241-3246. 10.1038/sj.onc.1205416.
22. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell 117, 927-939. 10.1016/j.cell.2004.06.006.
23. Papageorgis, P. (2015). TGFβSignaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Journal of Oncology 2015, 1-15. 10.1155/2015/587193.
24. Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., Del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology 2, 76-83. 10.1038/35000025.
25. O'Brien-Ball, C., and Biddle, A. (2017). Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 430, 266-274. 10.1016/j.ydbio.2017.07.025.
26. Reid, P.A., Wilson, P., Li, Y., Marcu, L.G., and Bezak, E. (2017). Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head & Neck 39, 1920-1932. 10.1002/hed.24848.
27. Mani, S.A., Guo, W., Liao, M.-J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133, 704-715. 10.1016/j.cell.2008.03.027.
28. Morel, A.-P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., and Puisieux, A. (2008). Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. PLoS ONE 3, e2888. 10.1371/journal.pone.0002888.
29. Bakris, G.L., Fonseca, V.A., Sharma, K., and Wright, E.M. (2009). Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75, 1272-1277. 10.1038/ki.2009.87.
30. Wright, E.M., Loo, D.D., Hirayama, B.A., and Turk, E. (2004). Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19, 370-376. 10.1152/physiol.00026.2004.
31. Wright, E.M., Loo, D.D., and Hirayama, B.A. (2011). Biology of human sodium glucose transporters. Physiol Rev 91, 733-794. 10.1152/physrev.00055.2009.
32. Rieg, T., Masuda, T., Gerasimova, M., Mayoux, E., Platt, K., Powell, D.R., Thomson, S.C., Koepsell, H., and Vallon, V. (2014). Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306, F188-193. 10.1152/ajprenal.00518.2013.
33. Ehrenkranz, J.R.L., Lewis, N.G., Ronald Kahn, C., and Roth, J. (2005). Phlorizin: a review. Diabetes/Metabolism Research and Reviews 21, 31-38. 10.1002/dmrr.532.
34. Rossetti, L., Smith, D., Shulman, G.I., Papachristou, D., and Defronzo, R.A. (1987). Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. Journal of Clinical Investigation 79, 1510-1515. 10.1172/jci112981.
35. Cowie, M.R., and Fisher, M. (2020). SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17, 761-772. 10.1038/s41569-020-0406-8.
36. Scheen, A.J. (2015). Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs 75, 33-59. 10.1007/s40265-014-0337-y.
37. Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J., et al. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine 373, 2117-2128. 10.1056/nejmoa1504720.
38. Neal, B., Perkovic, V., Mahaffey, K.W., De Zeeuw, D., Fulcher, G., Erondu, N., Shaw, W., Law, G., Desai, M., and Matthews, D.R. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine 377, 644-657. 10.1056/nejmoa1611925.
39. Emerging Risk Factors, C., Sarwar, N., Gao, P., Seshasai, S.R., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D.A., Selvin, E., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215-2222. 10.1016/S0140-6736(10)60484-9.
40. Vasilakou, D., Karagiannis, T., Athanasiadou, E., Mainou, M., Liakos, A., Bekiari, E., Sarigianni, M., Matthews, D.R., and Tsapas, A. (2013). Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159, 262-274. 10.7326/0003-4819-159-4-201308200-00007.
41. Storgaard, H., Gluud, L.L., Bennett, C., Grøndahl, M.F., Christensen, M.B., Knop, F.K., and Vilsbøll, T. (2016). Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLOS ONE 11, e0166125. 10.1371/journal.pone.0166125.
42. Wanner, C., Inzucchi, S.E., Lachin, J.M., Fitchett, D., Von Eynatten, M., Mattheus, M., Johansen, O.E., Woerle, H.J., Broedl, U.C., and Zinman, B. (2016). Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. New England Journal of Medicine 375, 323-334. 10.1056/nejmoa1515920.
43. Thwaini, A. (2006). Fournier's gangrene and its emergency management. Postgraduate Medical Journal 82, 516-519. 10.1136/pgmj.2005.042069.
44. Hu, Y., Bai, Z., Tang, Y., Liu, R., Zhao, B., Gong, J., and Mei, D. (2020). Fournier Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Pharmacovigilance Study with Data from the U.S. FDA Adverse Event Reporting System. J Diabetes Res 2020, 3695101. 10.1155/2020/3695101.
45. 衛生福利部食品藥物管理署 (2018). SGLT2抑制劑類藥品安全資訊風險溝通表(FDA藥字第1071408505號). http://tcpa.taiwan-pharma.org.tw/node/32274.
46. Administration, U.S.F.a.D. (2018). FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrences-serious-infection-genital-area-sglt2-inhibitors-diabetes.
47. Kaji, K., Nishimura, N., Seki, K., Sato, S., Saikawa, S., Nakanishi, K., Furukawa, M., Kawaratani, H., Kitade, M., Moriya, K., et al. (2018). Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. International Journal of Cancer 142, 1712-1722. 10.1002/ijc.31193.
48. Jojima, T., Wakamatsu, S., Kase, M., Iijima, T., Maejima, Y., Shimomura, K., Kogai, T., Tomaru, T., Usui, I., and Aso, Y. (2019). The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci 20. 10.3390/ijms20205237.
49. Zhou, J., Zhu, J., Yu, S.J., Ma, H.L., Chen, J., Ding, X.F., Chen, G., Liang, Y., and Zhang, Q. (2020). Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother 132, 110821. 10.1016/j.biopha.2020.110821.
50. Xie, Z., Wang, F., Lin, L., Duan, S., Liu, X., Li, X., Li, T., Xue, M., Cheng, Y., Ren, H., and Zhu, Y. (2020). An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Lett 495, 200-210. 10.1016/j.canlet.2020.09.005.
51. Chang, Y.-W., Su, Y.-J., Hsiao, M., Wei, K.-C., Lin, W.-H., Liang, C.-J., Chen, S.-C., and Lee, J.-L. (2015). Diverse Targets of β-Catenin during the Epithelial–Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse. Cancer Research 75, 3398-3410. 10.1158/0008-5472.can-14-3265.
52. Lin, W.-H., Chang, Y.-W., Hong, M.-X., Hsu, T.-C., Lee, K.-C., Lin, C., and Lee, J.-L. (2021). STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene 40, 791-805. 10.1038/s41388-020-01566-8.
53. Hsieh, T.-L. (2021). The role of Integrin β4 in regulating the epithelial to mesenchymal transition and cancer stemness in lung cancer. Master (National Tsing Hua University).
54. Wang, Y.-T. (2021). Biology and applications of small nucleolar RNA SNORD46 in defining lung cancer stem cells. Master (National Tsing Hua University).
55. Wang, Y., Yang, L., Mao, L., Zhang, L., Zhu, Y., Xu, Y., Cheng, Y., Sun, R., Zhang, Y., Ke, J., and Zhao, D. (2022). SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int 22, 74. 10.1186/s12935-022-02496-z.
56. Su, Y.J., Lin, W.H., Chang, Y.W., Wei, K.C., Liang, C.L., Chen, S.C., and Lee, J.L. (2015). Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3beta/beta-catenin signaling required for maintenance of cancer stem cell properties. Oncotarget 6, 38029-38045. 10.18632/oncotarget.5703.
57. Nieman, M.T., Prudoff, R.S., Johnson, K.R., and Wheelock, M.J. (1999). N-Cadherin Promotes Motility in Human Breast Cancer Cells Regardless of Their E-Cadherin Expression. Journal of Cell Biology 147, 631-644. 10.1083/jcb.147.3.631.
58. Wu, W., Zhang, Z., Jing, D., Huang, X., Ren, D., Shao, Z., and Zhang, Z. (2022). SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death & Disease 13. 10.1038/s41419-022-04980-w.

(此全文20270821後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 藉由間質幹細胞分泌的外泌體所轉移至癌細胞的RNAs/蛋白質能夠調控其癌症幹細胞的特性
2. CRISPR/Cas9藉由基因體和表觀基因組的編輯精準地調節癌症幹細胞相關基因表達
3. 間質幹細胞透過細胞間通道促進肺癌細胞產生癌症幹細胞的表型
4. Human antigen R 透過 TGF-beta 路徑來促進肺癌細胞的癌症幹細胞特性
5. PD-L1可誘發肺癌上皮-間質轉化並增加癌症幹性
6. 小核仁RNA SNORD46在肺癌幹細胞中的生物學及應用
7. 透過不同轉譯後修飾 STAT3 調控的 PD-L1 表現調節肺癌中的癌症幹細胞特性和 EMT
8. 粒線體STAT3 誘導PINK1/Parkin 介導的粒線體自噬以促進肺癌幹細胞特性
9. 整合素β4在調控肺癌上皮間質轉化和癌幹性中的作用
10. 骨髓間質幹細胞於調節上皮-間質轉化機制及促進癌症轉移所扮演的角色
11. 易位的STAT3 結合mtDNA以調控肺癌幹細胞中的粒線體編碼基因表達和癌幹細胞特性
12. PD-L1 透過 ITGB4/STAT3 信號路徑增強 EMT 與幹細胞特性來促進癌細胞轉移
13. 抑制Rho激酶-肌球蛋白II路徑對於誘導人類胚胎幹細胞衍生間葉前驅細胞產生神經型態之探討
14. 分泌型Frizzled相關蛋白1和3對Wnt訊號傳導路徑調控癌細胞的幹細胞特性和腫瘤新生能力中所造成的影響
15. sFRP4 (secreted Frizzled-related protein 4) 在Wnt訊息傳遞誘發轉型為癌症幹細胞過程所扮演的角色
 
* *