帳號:guest(3.142.212.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高祺原
作者(外文):Kao, Chi-Yuan
論文名稱(中文):可藥動態組的研究準備並發展透過測量COVID-19 Nsp16/10之活性來評估藥物篩選流程之準確性
論文名稱(外文):Preparation Studies on Druggable DynOmics and Developing a Method to Evaluate the Accuracy of Drug Discovery Pipeline by Measuring COVID-19 Nsp16/10 Activity
指導教授(中文):楊立威
指導教授(外文):Yang, Lee-Wei
口試委員(中文):溫進德
竹村和浩
蔡昆霖
口試委員(外文):Wen, Jin-Der
Takemura, Kazuhiro
Tsai, Kun-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:109080525
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:69
中文關鍵詞:嚴重特殊傳染性肺炎非結構蛋白16分子動力學模擬可藥動態組加帽RNA合成老藥新用
外文關鍵詞:SARS-CoV-2Nonstructural protein 16 (Nsp16)Molecular dynamics simulationsDruggable DynOmicsCapped RNA synthesisDrug repurposing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
SARS-CoV-2是一種正單鏈RNA病毒,也是引起全球2019冠狀病毒病(COVID-19)大流行的原兇,目前仍迫切需要對抗這種病毒的有效藥物。冠狀病毒的mRNA成熟涉及複雜的過程,包括病毒的非結構蛋白(Nsp)16進行mRNA加帽。這種修飾導致mRNA Cap-1的形成,mRNA Cap-1表示在mRNA 5'端的第一個核苷酸的核糖的糖的2'-O位置上添加甲基基團,此甲基基團影響病毒的免疫逃避和轉譯啟動。我專注於通過生化方法評估針對病毒mRNA成熟中至關重要的Nsp16/10複合物的抑制劑,來開發對抗SARS-CoV-2的有效藥物。我借助一個實驗室已開發的電腦輔助老藥新用篩選藥物平台,稱為DRDOCK(Drug Repurposing DOcking with Conformation-sampling and pose re-ranKing),來搜尋美國FDA批准的藥物(舊的藥物)以對抗SARS-CoV-2 Omicron變種病毒。鑒於Nsp16/10是Druggable DynOmics中收集的藥物標的之一,我還提出了一個標準程序用以選擇適合的實驗結構以進行模擬,並對Druggable DynOmics中部分藥物標的的活性位點進行調查。在論文中,我們測試了多個RNA受質,結果顯示一個缺乏腺嘌呤但富含鳥嘌呤的RNA受質最能促進Nsp16/Nsp10的催化作用,我以螢光強度來測量其催化效果。這一步確保了我能測量DRDOCK篩選的老藥和正控制組藥物的抑制效果。我的研究結果展現了DRDOCK平台在預測針對Nsp16/10的舊藥物的抑制潛力方面的有效性。這一開創性的方法在藥物發現流程中和現有藥物再利用策略中都代表了重大進步。Nsp16蛋白在各種SARS-CoV-2變體中的保守性表明針對Nsp16/10複合物的藥物的可能具有抑制病毒的潛力。這些藥物不僅有望對抗當前的COVID-19大流行,還能對抗新出現的致病冠狀病毒變體。
SARS-CoV-2, a positive-sense single-stranded RNA virus, is responsible for the global Coronavirus Disease 2019 (COVID-19) pandemic. Effective drugs against the virus are urgently needed. Coronavirus mRNA maturation involves intricate processes, including mRNA capping by the viral nonstructural protein (Nsp) 16. This modification leading to formation of Cap-1, also known as a methyl group to the 2'-O position of the ribose sugar on the first nucleotide of the mRNA's 5' end, is essential for immune evasion and translation initiation. In this thesis, I focus on the development of effective drugs against SARS-CoV-2 by biochemically evaluating inhibitors targeting the Nsp16/10 complex, crucial in viral mRNA maturation. Leveraging previously established drug repurposing platform, DRDOCK (Drug Repurposing DOcking with Conformation-sampling and pose re-ranKing) systematically screens FDA-approved (old) drugs for their repurposed use against the Nsp16/10 in the Omicron strain of SARS-CoV2. In view of Nsp16/10 being one of the drug targets collected in Druggable DynOmics, I also develop a protocol to select suitable experimentally determined structures for simulations and survey active sites for a portion of the drug targets in Druggable DynOmics. In the thesis, several RNA substrates were tested, an Adenine-free but Guanine-rich substrate was found to best promote the catalysis of Nsp16/Nsp10, quantified by luminescence intensity. The step secured a proper efficacy measurement for repurposed drugs suggested by DRDOCK and a positive control. Our findings showcase the effectiveness of the DRDOCK platform in predicting the inhibitory potential of old drugs targeting Nsp16/10. This method represents an advancement in drug discovery pipelines repurposing existing drugs. The conservation of the Nsp16 protein across a range of SARS-CoV-2 variants suggests the potential of drugs targeting the Nsp16/10 complex for virus suppression. These drugs hold a promise to combat not only the current COVID19 pandemic but also newly emerging pathogenic coronaviruses.
Table of contents
ABSTRACT i
中文摘要 ii
ACKNOWLEDGMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
1.INTRODUCTION 1
2.METHOD 7
2.1 PROTEIN STRUCTURE SELECTION AND IDENTIFY ACTIVE SITES 7
2.2 MD SIMULATIONS 11
2.2.1 Preparation of Initial Systems for MD Simulations 11
2.2.2 Energy Minimization 11
2.2.3 Heating Simulation 12
2.2.4 NVT Equilibrium Simulation 13
2.2.5 NPT Equilibrium Simulation 13
2.2.6 Production MD Simulation Run 13
2.3 PROTEIN DYNAMICS ANALYSIS 15
2.3.1 Residues within the drug-binding region 15
2.3.2 Principal Component Analysis (PCA) 15
2.3.3 Silhouette Coefficient 16
2.3.4 K-means clustering 16
2.4 DSDNA PREPARATION FOR RNA SYNTHESIS 18
2.5 RNA SUBSTRATE PREPARATION 20
2.6 NSP16/10 METHYLTRANSFERASE (MTASE) ACTIVITY ASSAY 22
3.RESULTS 26
3.1 DEVELOPING METHODOLOGIES FOR PROTEIN STRUCTURE SELECTION AND ACTIVE SITE IDENTIFICATION: EXEMPLIFIED CHALLENGES AND SOLUTIONS 26
3.1.1 Druggable proteins analysis 26
3.1.2 Integration of Proteins from Multiple Clusters into one MD Simulation 30
3.1.3 Membrane Inclusion for Some Soluble Proteins 34
3.2 PROTEIN STRUCTURE SELECTION AND IDENTIFY ACTIVE SITES OF NSP16/10 36
3.3 LOD SCORE FROM DOCKING RESULTS OF NSP16 37
3.4 MD SIMULATION 39
3.5 CONSERVATION ANALYSIS OF NSP16/10 44
3.6 SSDNA ANNEALING ANALYSIS 50
3.7 DETERMINING DNA TEMPLATES FOR RNA SYNTHESIS 52
3.8 RNA PRODUCT ANALYSIS 55
3.9 ENZYME INHIBITION BY DRDOCK-PREDICTED CANDIDATE DRUGS 57
3.10 CELL TOXICITY BY DRDOCK-PREDICTED CANDIDATE DRUGS 59
3.11 SUPPRESSION OF THE SARS-COV-2 VIRUS BY DRDOCK-PREDICTED CANDIDATE DRUGS 61
4.DISCUSSION 63
5.REFERENCE 65

Aliakbar Khalili Yazdi, Li F, Kanchan Devkota, Perveen S, Pegah Ghiabi, Hajian T, Bolotokova A, Masoud Vedadi. 2021 Feb 3. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. bioRxiv (Cold Spring Harbor Laboratory). doi:https://doi.org/10.1101/2021.02.03.429625.
Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E. 2010. In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation. Buchmeier MJ, editor. PLoS Pathogens. 6(4):e1000863. doi:https://doi.org/10.1371/journal.ppat.1000863.
Brinkman H-JM, Mertens K, van Mourik JA. 2002. Phospholipid-Binding Domain of Factor VIII Is Involved in Endothelial Cell–Mediated Activation of Factor X by Factor IXa. Arteriosclerosis, Thrombosis, and Vascular Biology. 22(3):511–516. doi:https://doi.org/10.1161/hq0302.105359.
Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, Yuen K-Y. 2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections. 9(1):221–236. doi:https://doi.org/10.1080/22221751.2020.1719902.
Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, et al. 2011. Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. Kuhn RJ, editor. PLoS Pathogens. 7(10):e1002294. doi:https://doi.org/10.1371/journal.ppat.1002294.
Chen Z, Boon SS, Wang MH, Chan RWY, Chan PKS. 2021. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. Journal of Virological Methods. 289:114032. doi:https://doi.org/10.1016/j.jviromet.2020.114032.
Coleman T, Wang G, Huang F. 2004. Superior 5’ homogeneity of RNA from ATP-initiated transcription under the T7 2.5 promoter. Nucleic Acids Research. 32(1):14e14. doi:https://doi.org/10.1093/nar/gnh007.
Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin T-Y, Schneller S, Zust R, Dong H, et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 468(7322):452–456. doi:https://doi.org/10.1038/nature09489. [accessed 2020 Dec 29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058805/.
Davis ME, McCammon JA. 1989. Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods. Journal of Computational Chemistry. 10(3):386–391. doi:https://doi.org/10.1002/jcc.540100313.
Decroly E, Canard B. 2017. Biochemical principles and inhibitors to interfere with viral capping pathways. Current opinion in virology. 24:87–96. doi:https://doi.org/10.1016/j.coviro.2017.04.003. [accessed 2019 Oct 30]. https://www.ncbi.nlm.nih.gov/pubmed/28527860?dopt=Abstract.
Encinar JA, Menendez JA. 2020. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2’-O-Methylation of Viral RNA. Viruses. 12(5):525. doi:https://doi.org/10.3390/v12050525.
Ferreira JC, Fadl S, Villanueva AJ, Rabeh WM. 2021. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Frontiers in Chemistry. 9. doi:https://doi.org/10.3389/fchem.2021.692168.
Goueli SA, Hsiao K, Zegzouti H. 2013. METHODS FOR DETECTING ADENOSINE MONOPHOSPHATE IN BIOLOGICAL SAMPLES.
Hartmann RK, Albrecht Bindereif, Schön A, Westhof E. 2015. Handbook of RNA Biochemistry. John Wiley & Sons.
Hoang Linh Nguyen, Nguyen Quoc Thai, Mai Suan Li. 2022. Identifying inhibitors of NSP16-NSP10 of SARS-CoV-2 from large databases. Journal of Biomolecular Structure & Dynamics. 41(15):7045–7054. doi:https://doi.org/10.1080/07391102.2022.2114941.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 79(2):926–935. doi:https://doi.org/10.1063/1.445869.
Karki N, Leslie SW. 2023. Struvite and Triple Phosphate Renal Calculi. PubMed. [accessed 2023 Aug 31]. https://www.ncbi.nlm.nih.gov/books/NBK568783/#_article-29583_s3_.
Kim DW, Gwack Y, Han JH, Choe J. 1995. C-Terminal Domain of the Hepatitis C Virus NS3 Protein Contains an RNA Helicase Activity. Biochemical and Biophysical Research Communications. 215(1):160–166. doi:https://doi.org/10.1006/bbrc.1995.2447.
Kini RM, Evans HJ. 1991. Molecular Modeling of Proteins: A Strategy for Energy Minimization by Molecular Mechanics in the AMBER Force Field. Journal of Biomolecular Structure and Dynamics. 9(3):475–488. doi:https://doi.org/10.1080/07391102.1991.10507930.
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, et al. 2000. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research. 33(12):889–897. doi:https://doi.org/10.1021/ar000033j. [accessed 2021 Nov 17]. https://pubmed.ncbi.nlm.nih.gov/11123888/.
Krishnaswamy S. 2013. The Transition of Prothrombin to Thrombin. Journal of thrombosis and haemostasis : JTH. 11(0 1):265–276. doi:https://doi.org/10.1111/jth.12217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713535/.
Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research. 33(Web Server):W299–W302. doi:https://doi.org/10.1093/nar/gki370.
Li H, Chang Y-Y, Lee JY, Bahar I, Yang L-W. 2017. DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Research. 45(W1):W374–W380. doi:https://doi.org/10.1093/nar/gkx385. [accessed 2019 Nov 11]. https://doi.org/10.1093/nar/gkx385.
Lin D-W (林岱葳). 2020 Oct 22. 系綜對接方法應用於發現抗癌藥物:以自噬作用蛋白LC3為例。. ﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdlhandlenet/11296/28kvsj。. [accessed 2023 Sep 6]. https://hdl.handle.net/11296/28kvsj.
Madeira F et al. 2019. The EMBL-ebi search and sequence analysis tools apis in 2019. Nucleic Acids Research. 47(W1). doi:https://doi.org/10.1093/nar/gkz268.
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. 2015. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation. 11(8):3696–3713. doi:https://doi.org/10.1021/acs.jctc.5b00255.
Miyamoto S, Kollman PA. 1992. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry. 13(8):952–962. doi:https://doi.org/10.1002/jcc.540130805.
Mizuno H, Fujimoto Z, Atoda H, Morita T. 2001. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proceedings of the National Academy of Sciences. 98(13):7230–7234. doi:https://doi.org/10.1073/pnas.131179698.
Mohammad Hadi Abbasian, Mohammadamin Mahmanzar, Rahimian K, Mahdavi B, Samaneh Tokhanbigli, Moradi B, Mahsa Mollapour Sisakht, Deng Y. 2023. Global landscape of SARS-CoV-2 mutations and conserved regions. Journal of Translational Medicine. 21(1). doi:https://doi.org/10.1186/s12967-023-03996-w.
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. 2011. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation. 7(2):525–537. doi:https://doi.org/10.1021/ct100578z.
Our World in Data. 2022. Coronavirus (COVID-19) cases - statistics and research. Our World in Data. https://ourworldindata.org/covid-cases.
Pathak N, Chen Y-T, Hsu Y-C, Hsu N-Y, Kuo C-J, Tsai HP, Kang J-J, Huang C-H, Chang S-Y, Chang Y-H, et al. 2020. Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing. ACS Nano. 15(1):857–872. doi:https://doi.org/10.1021/acsnano.0c07383.
Ribeiro A, Holliday GL, Furnham N, Tyzack JD, Ferris K, Thornton JM. 2017. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Research. 46(D1):D618–D623. doi:https://doi.org/10.1093/nar/gkx1012.
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng W-L. 2020. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Molecular Cell. 79(5):710–727. doi:https://doi.org/10.1016/j.molcel.2020.07.027. https://www.cell.com/molecular-cell/pdf/S1097-2765(20)30518-9.pdf.
Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Brunzelle J, Satchell KJF. 2020. High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling. 13(651). doi:https://doi.org/10.1126/scisignal.abe1202. [accessed 2020 Dec 2]. https://stke.sciencemag.org/content/13/651/eabe1202.
Roser M, Ritchie H. 2020. Coronavirus Disease (COVID-19). Our World in Data. 1(1). https://ourworldindata.org/coronavirus.
Rousseeuw PJ. 1987. Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics. 20:53–65. doi:https://doi.org/10.1016/0377-0427(87)90125-7.
Saleh NA, Elhaes H, Ibrahim M. 2017 Jan 1. Chapter 2 - Design and Development of Some Viral Protease Inhibitors by QSAR and Molecular Modeling Studies. Gupta SP, editor. ScienceDirect.:25–58. https://www.sciencedirect.com/science/article/pii/B9780128097120000022.
Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, et al. 2016. A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery. 16(1):19–34. doi:https://doi.org/10.1038/nrd.2016.230.
Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. 2014. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Research. 194:90–99. doi:https://doi.org/10.1016/j.virusres.2014.10.008.
Sigma Aldrich. Annealing Oligonucleotides Protocol. [accessed 2023 Aug 27]. https://www.sigmaaldrich.com/US/technical-documents/protocol/genomics/pcr/annealing-oligos.
Trott O, Olson AJ. 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 31(2):NA-NA. doi:https://doi.org/10.1002/jcc.21334.
Tsai K-L, Chang S-Y, Yang L-W. 2021 Feb 2. DRDOCK: A Drug Repurposing platform integrating automated docking, simulations and a log-odds-based drug ranking scheme. doi:https://doi.org/10.1101/2021.01.31.429052. [accessed 2022 Oct 18]. https://www.biorxiv.org/content/biorxiv/early/2021/08/15/2021.01.31.429052.full.pdf.
Tse LV, Meganck RM, Graham RL, Baric RS. 2020. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Frontiers in Microbiology. 11. doi:https://doi.org/10.3389/fmicb.2020.00658.
Venkateswarlu D, Perera L, Darden T, Pedersen LG. 2002. Structure and dynamics of zymogen human blood coagulation factor X. Biophysical Journal. 82(3):1190–1206. [accessed 2023 Aug 31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301923.
Viswanathan T, Arya S, Chan S-H, Qi S, Dai N, Misra A, Park J-G, Oladunni F, Kovalskyy D, Hromas RA, et al. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nature Communications. 11(1). doi:https://doi.org/10.1038/s41467-020-17496-8. [accessed 2021 Mar 10]. https://www.nature.com/articles/s41467-020-17496-8.pdf.
von Grotthuss M, Wyrwicz LS, Rychlewski L. 2003. mRNA Cap-1 Methyltransferase in the SARS Genome. Cell. 113(6):701–702. doi:https://doi.org/10.1016/s0092-8674(03)00424-0.
Word JMichael, Lovell SC, Richardson JS, Richardson DC. 1999. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation 1 1Edited by J. Thornton. Journal of Molecular Biology. 285(4):1735–1747. doi:https://doi.org/10.1006/jmbi.1998.2401.
Yang L-W, E. Eyal, Bahar I, Akio Kitao. 2009. Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics. 25(16):2147–2147. doi:https://doi.org/10.1093/bioinformatics/btp396.
Zeng C, Wu A, Wang Y, Xu S, Tang Y, Jin X, Wang S, Qin L, Sun Y, Fan C, et al. 2016. Identification and Characterization of a Ribose 2′-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. Perlman S, editor. Journal of Virology. 90(15):6675–6685. doi:https://doi.org/10.1128/jvi.00658-16.
Zheng K, Wu R, He Y, Xiao S, Zhang J-Y, Liu J, Hao Y, Tan Z. 2014. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Research. 42(16):10832–10844. doi:https://doi.org/10.1093/nar/gku764.
(此全文20280919後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 結合分子動力學模擬與新穎的藥物排序方法的自動化老藥新用篩選平台DRDOCK:以自噬作用蛋白ATG4B、LC3及SARS-CoV2偽結為標的
2. 結合小分子對接和自由能計算篩選靶向自噬體蛋白質ATG4B之胰臟癌候選藥物
3. 以蛋白質序列、結構及固有動態來正確地預測酵素催化位點
4. Protein dynamics and contact topology studies reveal characteristics of Protein-DNA binding and distribution of enzyme catalytic sites
5. 使用線性響應理論預測蛋白質結合配體後的結構變化
6. 在感知決策時關於決策之優化及適應的可塑性皮質-紋狀體迴路模型
7. 磷酸化後形成新的跨分子鹽橋可穩定FGF2過渡態之多聚體結構
8. 透過同源建模、經驗勢能和螢光共振能量轉移來更準確的預測膜蛋白四級結構
9. 植物磷酸轉運膜蛋白PHT1;1藉由機械化學協同作用促進無機磷的轉運
10. 高效且具有鳥嘌呤結合專一性的RNA結合蛋白可演化為不需ATP的dsDNA解旋酶
11. 運用機器學習建立模型以有效的預測蛋白質的振盪尺度
12. 細究功能蛋白及核醣體讓DNA/RNA穩定結合、彎曲、打開及滾動形變的機械化學原因
13. 探索TDP-43對DNA/RNA的結合特性及其可能作為RNA伴護蛋白之活性
14. 一種用於預測-1計畫性核醣體轉譯軌道移轉訊號(-1PRF)在病毒基因組位置的新軟體並以cell-free方法驗證預測之-1PRF信號在Zika病毒基因組中的位置
15. 整合蛋白質彈性網路模型與人工智慧方法預測蛋白質動態
 
* *