帳號:guest(13.59.20.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱筠筑
作者(外文):Chiou, Yun-Ju
論文名稱(中文):不同痕跡間隔下大鼠學習古典恐懼制約之行為表現與神經活性分析
論文名稱(外文):Behavioral Analyses and Neuronal Correlates of Rats Trained with Classical Fear Conditioning under Different Trace Intervals
指導教授(中文):張鈞惠
指導教授(外文):Chang, Chun-Hui
口試委員(中文):賴文崧
陳景宗
黃佳瑜
呂國棟
口試委員(外文):Lai, Wen-Sung
Chen, Jin-Chung
Huang, Chia-Yu
Lu, Kwok-Tung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:109080517
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:54
中文關鍵詞:恐懼制約痕跡間格大鼠恐懼迴路
外文關鍵詞:trace fear conditioningtrace intervalratfear circuitryc-Fos
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
古典恐懼制約(classical fear conditioning)中,有兩個刺激參與其中,分別是制約刺激(conditional stimulus,如:一段聲音)與非制約刺激(unconditional stimulus,如:微電擊)。其中常見的兩種安排為延宕制約(delay conditioning)與痕跡制約(trace conditioning)。延宕制約的非制約刺激接在制約刺激後出現,兩刺激重疊且同時結束;痕跡制約中兩刺激間有一個空白的時間間隔,稱作痕跡間隔。在此研究中,我們討論了制約刺激與非制約刺激之間的連結較弱是由於時間間隔變長所導致,或是因為動物將制約刺激當成安全訊號(safety signal),另外也分析動物是否可能準確預測電擊該出現的時間點。動物依據組別分別進行延宕制約或不同痕跡間隔(30秒、60秒或120秒)之痕跡制約,試驗間隔(inter-trial interval)為240秒。進行恐懼制約後,動物進入另一個情境測試對聲音的恐懼程度(實驗1)或在能夠按壓壓桿得到食物以維持基本活動量的情況下測試對聲音的恐懼程度(實驗2)。行為結果顯示,隨著痕跡間隔越長,動物對聲音的恐懼表現越低,且痕跡組別(30秒與60秒)於制約刺激結束後表現出更高的恐懼(實驗1)。但在能夠按壓壓桿以維持基本活動量下,痕跡組別對於聲音接表現出低的凍結(freezing)反應與低的壓桿抑制比(suppression ratio),且一次試驗(trial)中最高的恐懼表現仍為聲音出現時(實驗2)。神經生理方面,我們利用c-fos蛋白測量於實驗2中,動物提取恐懼記憶時腦區的神經活化程度,並發現基底外側杏仁核(basolateral complex of amygdala)與內側前額葉皮質(medial prefrontal cortex)的活化程度與對聲音的凍結程度呈現正相關的結果。基底外側杏仁核為儲存制約刺激與非制約刺激之間的連結,我們的結果支持了動物於痕跡制約中,對於制約刺激表現出較低的恐懼反應的原因較可能是因為制約刺激與非制約刺激的連結較弱所導致。
In classical fear conditioning, the conditional stimulus (CS, e.g. a tone) and the unconditional stimulus (US, e.g. a foot shock) are presented. Different from delay conditioning, in which the US is presented after the CS onset and the two stimuli overlap and end together, in trace conditioning, the CS and the US are separated by a stimulus-free temporal gap called “trace interval”. In this study, we aimed to examine whether the association between the CS and the US become weaker simply because the trace intervals become longer, or alternatively, the rats treat the CS as safety signals and fear to tones surge after CS offset. The animals underwent delay conditioning or trace conditioning with different trace intervals (30s, 60s, or 120s) and with inter-trial intervals (ITI) of 240s. After fear conditioning, their fear to tones were assessed in a shifted context (Experiment 1) or on top of the operant behavior of lever-pressing for food reward that maintained the baseline activities (Experiment 2). Behaviorally, our data showed that the fear to tones became lower as the trace interval became longer, and TRACE groups (30s and 60s) showed slightly increased fear after CS offset (Experiment 1). However, when operant behavior of lever-pressing was implemented to maintain baseline activities, the TRACE groups showed low freezing and suppression ratio to tones, and CS presentation was the time the rats showed highest fear in all of the experimental groups (Experiment 2). Neurobiologically, c-Fos activation levels were assessed in fear-related brain regions during fear retrieval in Experiment 2, and we found positive correlations between the freezing levels to tones and activation levels in basolateral complex of the amygdala and medial prefrontal cortex. Since the basolateral complex is where the CS-US association occurred and stored, our results supported the idea that the low fear response to the CS in animals trained with trace procedures was more likely a result of the weaker CS-US association.
中文摘要 i
Abstract ii
Chapter 1 Introduction 1
1.1 Pavlovian fear conditioning 1
1.2 Neurobiology of trace fear conditioning 1
1.3 Trace fear conditioning with long trace intervals 3
1.4 Specific aims 4
Chapter 2 Materials and methods 6
2.1 Subjects 6
2.2 Behavioral apparatus 6
2.3 Behavioral procedures 7
2.4 Immunohistochemistry 8
2.5 Data analysis and Statistics 9
2.5.1 Behavioral results 9
2.5.2 c-Fos quantification 11
Chapter 3 Results 12
3.1 Experiment 1: Fear conditioning under different trace intervals 12
3.1.1 Behavioral results 12
3.2 Experiment 2: Fear retrieval on top of lever-pressing behavior 14
3.2.1 Behavioral results 15
3.2.2 c-Fos quantifications 18
Chapter 4 Discussion 21
Table 27
Figures 28
Reference 49

Annau, Z. & Kamin, L. J. (1961) The conditioned emotional response as a function of intensity of the US. J Comp Physiol Psychol, 54, 428-32.
Aoki, Y., Igata, H., Ikegaya, Y. & Sasaki, T. (2019) The Integration of Goal-Directed Signals onto Spatial Maps of Hippocampal Place Cells. Cell Rep, 27(5), 1516-1527 e5.
Bakechea, A., Djouini, A., Nouacer, M., Chebbah, F., Manseura, A., Retem, C., Abdelmadjid, B. & Tahraoui, A. (2021) Activity and rest alternation: temporal distribution and influencing factors in nocturnal rodents. Journal of Animal Behaviour and Biometeorology, 9, 1-4.
Balsam, P. (1984) Relative time in trace conditioning. Ann N Y Acad Sci, 423, 211-27.
Bang, S. J. & Brown, T. H. (2009) Perirhinal cortex supports acquired fear of auditory objects. Neurobiol Learn Mem, 92(1), 53-62.
Bangasser, D. A., Waxler, D. E., Santollo, J. & Shors, T. J. (2006) Trace conditioning and the hippocampus: the importance of contiguity. J Neurosci, 26(34), 8702-6.
Barsy, B., Kocsis, K., Magyar, A., Babiczky, A., Szabo, M., Veres, J. M., Hillier, D., Ulbert, I., Yizhar, O. & Matyas, F. (2020) Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat Neurosci, 23(5), 625-637.
Bartley, T. D. & Furtak, S. C. (2021) Perirhinal damage produces modality-dependent deficits in fear learning. Neurobiol Learn Mem, 181, 107427.
Bayer, H. & Bertoglio, L. J. (2020) Infralimbic cortex controls fear memory generalization and susceptibility to extinction during consolidation. Sci Rep, 10(1), 15827.
Beeman, C. L., Bauer, P. S., Pierson, J. L. & Quinn, J. J. (2013) Hippocampus and medial prefrontal cortex contributions to trace and contextual fear memory expression over time. Learn Mem, 20(6), 336-43.
Bloodgood, D. W., Sugam, J. A., Holmes, A. & Kash, T. L. (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry, 8(1), 60.
Bouton, M. E. & Bolles, R. C. (1980a) Conditioned Fear Assessed by Freezing and by the Suppression of 3 Different Baselines. Animal Learning & Behavior, 8(3), 429-434.
Bouton, M. E. & Bolles, R. C. (1980b) Conditioned fear assessed by freezing and by the suppression of three different baselines. Animal Learning & Behavior, 8(3), 429-434.
Burgos-Robles, A., Bravo-Rivera, H. & Quirk, G. J. (2013) Prelimbic and infralimbic neurons signal distinct aspects of appetitive instrumental behavior. PLoS One, 8(2), e57575.
Burman, M. A. & Gewirtz, J. C. (2004) Timing of fear expression in trace and delay conditioning measured by fear-potentiated startle in rats. Learn Mem, 11(2), 205-12.
Butler, C. W., Wilson, Y. M., Oyrer, J., Karle, T. J., Petrou, S., Gunnersen, J. M., Murphy, M. & Reid, C. A. (2018) Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display Increased Synaptic Strength. eNeuro, 5(3).
Chai, J., Ruan, X., Huang, J. & Li, P. (2020) A Goal-Directed Behavioral Learning Model Based on Hippocampal-Striatal Circuit, 2020 Chinese Control And Decision Conference (CCDC). 22-24 Aug. 2020.
Chen, Y. H., Lan, Y. J., Zhang, S. R., Li, W. P., Luo, Z. Y., Lin, S., Zhuang, J. P., Li, X. W., Li, S. J., Yang, J. M. & Gao, T. M. (2017) ErbB4 signaling in the prelimbic cortex regulates fear expression. Transl Psychiatry, 7(7), e1168.
Chen, Y. H., Wu, J. L., Hu, N. Y., Zhuang, J. P., Li, W. P., Zhang, S. R., Li, X. W., Yang, J. M. & Gao, T. M. (2021) Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest, 131(14).
Chowdhury, N., Quinn, J. J. & Fanselow, M. S. (2005) Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci, 119(5), 1396-402.
Conejo, N., Matías, L., González-Pardo, H., Cantora, R., Begega, A., Lopez, L., Arias, J. & Vallejo, G. (2005) Brain metabolism after extended training in a fear conditioning task. Psicothema, ISSN 0214-9915, Vol. 17, Nº. 4, 2005, pags. 563-568, 17.
Czerniawski, J., Ree, F., Chia, C. & Otto, T. (2012) Dorsal versus ventral hippocampal contributions to trace and contextual conditioning: differential effects of regionally selective NMDA receptor antagonism on acquisition and expression. Hippocampus, 22(7), 1528-39.
Czerniawski, J., Yoon, T. & Otto, T. (2009) Dissociating space and trace in dorsal and ventral hippocampus. Hippocampus, 19(1), 20-32.
Davis, M., Schlesinger, L. S. & Sorenson, C. A. (1989) Temporal specificity of fear conditioning: effects of different conditioned stimulus-unconditioned stimulus intervals on the fear-potentiated startle effect. J Exp Psychol Anim Behav Process, 15(4), 295-310.
Dolleman-van der Weel, M. J., Griffin, A. L., Ito, H. T., Shapiro, M. L., Witter, M. P., Vertes, R. P. & Allen, T. A. (2019) The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem, 26(7), 191-205.
Drew, M. R., Zupan, B., Cooke, A., Couvillon, P. A. & Balsam, P. D. (2005) Temporal control of conditioned responding in goldfish. J Exp Psychol Anim Behav Process, 31(1), 31-9.
Duvarci, S. & Pare, D. (2014) Amygdala microcircuits controlling learned fear. Neuron, 82(5), 966-80.
Fadok, J. P., Markovic, M., Tovote, P. & Luthi, A. (2018) New perspectives on central amygdala function. Curr Opin Neurobiol, 49, 141-147.
Fritz, C. O., Morris, P. E. & Richler, J. J. (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen, 141(1), 2-18.
Gilmartin, M. R. & Helmstetter, F. J. (2010) Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learn Mem, 17(6), 289-96.
Grewe, B. F., Grundemann, J., Kitch, L. J., Lecoq, J. A., Parker, J. G., Marshall, J. D., Larkin, M. C., Jercog, P. E., Grenier, F., Li, J. Z., Luthi, A. & Schnitzer, M. J. (2017) Neural ensemble dynamics underlying a long-term associative memory. Nature, 543(7647), 670-675.
Grossen, N. E. & Bolles, R. C. (1968) Effects of a classical conditioned ‘fear signal’ and ‘safety signal’ on nondiscriminated avoidance behavior. Psychonomic Science, 11(9), 321-322.
Huerta, P. T., Sun, L. D., Wilson, M. A. & Tonegawa, S. (2000) Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 25(2), 473-80.
Joscelyne, A. & Kehoe, E. J. (2007) Time and stimulus specificity in extinction of the conditioned nictitating membrane response in the rabbit (Oryctolagus cuniculus). Behav Neurosci, 121(1), 50-62.
Kaplan, P. S. (1984) Importance of Relative Temporal Parameters in Trace Autoshaping - from Excitation to Inhibition. Journal of Experimental Psychology-Animal Behavior Processes, 10(2), 113-126.
Kent, B. A. & Brown, T. H. (2012) Dual functions of perirhinal cortex in fear conditioning. Hippocampus, 22(10), 2068-79.
Kim, E. J., Kim, N., Kim, H. T. & Choi, J. S. (2013) The prelimbic cortex is critical for context-dependent fear expression. Front Behav Neurosci, 7, 73.
Kim, J. J. & Jung, M. W. (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev, 30(2), 188-202.
Knapska, E., Walasek, G., Nikolaev, E., Neuhausser-Wespy, F., Lipp, H. P., Kaczmarek, L. & Werka, T. (2006) Differential involvement of the central amygdala in appetitive versus aversive learning. Learn Mem, 13(2), 192-200.
Kochli, D. E., Thompson, E. C., Fricke, E. A., Postle, A. F. & Quinn, J. J. (2015) The amygdala is critical for trace, delay, and contextual fear conditioning. Learn Mem, 22(2), 92-100.
Krabbe, S., Grundemann, J. & Luthi, A. (2018) Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biol Psychiatry, 83(10), 800-809.
Kryukov, V. I. (2012) Towards a unified model of pavlovian conditioning: short review of trace conditioning models. Cogn Neurodyn, 6(5), 377-98.
Lakens, D. (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol, 4, 863.
LeDoux, J. E. (2000) Emotion circuits in the brain. Annu Rev Neurosci, 23, 155-84.
LeGates, T. A., Kvarta, M. D., Tooley, J. R., Francis, T. C., Lobo, M. K., Creed, M. C. & Thompson, S. M. (2018) Reward behaviour is regulated by the strength of hippocampus-nucleus accumbens synapses. Nature, 564(7735), 258-262.
Lin, Y. J., Chiou, R. J. & Chang, C. H. (2020) The Reuniens and Rhomboid Nuclei Are Required for Acquisition of Pavlovian Trace Fear Conditioning in Rats. eNeuro, 7(3).
Ma, C., Jean-Richard-Dit-Bressel, P., Roughley, S., Vissel, B., Balleine, B. W., Killcross, S. & Bradfield, L. A. (2020) Medial Orbitofrontal Cortex Regulates Instrumental Conditioned Punishment, but not Pavlovian Conditioned Fear. Cereb Cortex Commun, 1(1), tgaa039.
Maren, S. & Holt, W. G. (2004) Hippocampus and Pavlovian fear conditioning in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. Behav Neurosci, 118(1), 97-110.
Marlin, N. A. (1981) Contextual associations in trace conditioning. Animal Learning & Behavior, 9(4), 519-523.
Marlin, N. A. & Miller, R. R. (1981) Associations to contextual stimuli as a determinant of long-term habituation. J Exp Psychol Anim Behav Process, 7(4), 313-33.
McGregor, M., Richer, K., Ananth, M. & Thanos, P. K. (2020) The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav, 10(8), e01646.
Misane, I., Tovote, P., Meyer, M., Spiess, J., Ogren, S. O. & Stiedl, O. (2005) Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice. Hippocampus, 15(4), 418-26.
Modlinska, K., Chrzanowska, A. & Pisula, W. (2019) The impact of changeability of enriched environment on exploration in rats. Behav Processes, 164, 78-85.
Nagayoshi, T., Ishikawa, R. & Kida, S. (2022) Anterior cingulate cortex projections to the dorsal hippocampus positively control the expression of contextual fear generalization. Learn Mem, 29(3), 77-82.
Pajser, A., Foster, C., Gaeddert, B. & Pickens, C. L. (2021) Extended operant training increases infralimbic and prelimbic cortex Fos regardless of fear conditioning experience. Behav Brain Res, 414, 113476.
Parkes, S. L. & Westbrook, R. F. (2010) The basolateral amygdala is critical for the acquisition and extinction of associations between a neutral stimulus and a learned danger signal but not between two neutral stimuli. J Neurosci, 30(38), 12608-18.
Pavlov, P. I. (2010) Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann Neurosci, 17(3), 136-41.
Pellman, B. A., Schuessler, B. P., Tellakat, M. & Kim, J. J. (2017) Sexually Dimorphic Risk Mitigation Strategies in Rats. eNeuro, 4(1).
Penninx, B. W., Pine, D. S., Holmes, E. A. & Reif, A. (2021) Anxiety disorders. Lancet, 397(10277), 914-927.
Phillips, R. G. & LeDoux, J. E. (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem, 1(1), 34-44.
Pickens, C. L., Navarre, B. M. & Nair, S. G. (2010) Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing. Neuroscience, 169(4), 1501-10.
Potter, N. M., Calub, C. A. & Furtak, S. C. (2020) Perirhinal cortex inactivation produces retrieval deficits in fear extinction to a discontinuous visual stimulus. Behav Neurosci, 134(2), 144-152.
Quirk, G. J., Russo, G. K., Barron, J. L. & Lebron, K. (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci, 20(16), 6225-31.
Raber, J., Arzy, S., Bertolus, J. B., Depue, B., Haas, H. E., Hofmann, S. G., Kangas, M., Kensinger, E., Lowry, C. A., Marusak, H. A., Minnier, J., Mouly, A. M., Muhlberger, A., Norrholm, S. D., Peltonen, K., Pinna, G., Rabinak, C., Shiban, Y., Soreq, H., van der Kooij, M. A., Lowe, L., Weingast, L. T., Yamashita, P. & Boutros, S. W. (2019) Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev, 105, 136-177.
Ramanathan, K. R., Ressler, R. L., Jin, J. & Maren, S. (2018) Nucleus Reuniens Is Required for Encoding and Retrieving Precise, Hippocampal-Dependent Contextual Fear Memories in Rats. J Neurosci, 38(46), 9925-9933.
Raybuck, J. D. & Lattal, K. M. (2014) Bridging the interval: theory and neurobiology of trace conditioning. Behav Processes, 101, 103-11.
Ressler, R. L. & Maren, S. (2019) Synaptic encoding of fear memories in the amygdala. Curr Opin Neurobiol, 54, 54-59.
Richardson, J. T. J. E. R. R. (2011) Eta squared and partial eta squared as measures of effect size in educational research, 6(2), 135-147.
Rigoli, F., Pezzulo, G. & Dolan, R. J. (2016) Prospective and Pavlovian mechanisms in aversive behaviour. Cognition, 146, 415-25.
Roberto, M., Kirson, D. & Khom, S. (2021) The Role of the Central Amygdala in Alcohol Dependence. Cold Spring Harb Perspect Med, 11(2).
Seligowski, A. V., Hurly, J., Mellen, E., Ressler, K. J. & Ramikie, T. S. (2020) Translational studies of estradiol and progesterone in fear and PTSD. Eur J Psychotraumatol, 11(1), 1723857.
Sharpe, M. J. & Killcross, S. (2014) The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear. Front Syst Neurosci, 8, 235.
Sierra-Mercado, D., Padilla-Coreano, N. & Quirk, G. J. (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529-38.
Simic, G., Tkalcic, M., Vukic, V., Mulc, D., Spanic, E., Sagud, M., Olucha-Bordonau, F. E., Vuksic, M. & P, R. H. (2021) Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules, 11(6).
Steinberg, E. E., Gore, F., Heifets, B. D., Taylor, M. D., Norville, Z. C., Beier, K. T., Foldy, C., Lerner, T. N., Luo, L., Deisseroth, K. & Malenka, R. C. (2020) Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 106(6), 1026-1043 e9.
Sun, Y., Gooch, H. & Sah, P. (2020) Fear conditioning and the basolateral amygdala. F1000Res, 9.
Urcelay, G. P. & Miller, R. R. (2014) The functions of contexts in associative learning. Behav Processes, 104, 2-12.
Velazquez-Hernandez, G. & Sotres-Bayon, F. (2021) Lateral Habenula Mediates Defensive Responses Only When Threat and Safety Memories Are in Conflict. eNeuro, 8(2).
Wilmot, J. H., Puhger, K. & Wiltgen, B. J. (2019) Acute Disruption of the Dorsal Hippocampus Impairs the Encoding and Retrieval of Trace Fear Memories. Front Behav Neurosci, 13, 116.
Wu, Y. T. & Chang, C. H. (2022) Functional Reuniens and Rhomboid Nuclei Are Required for Proper Acquisition and Expression of Cued and Contextual Fear in Trace Fear Conditioning. Int J Neuropsychopharmacol, 25(4), 319-327.
Yang, Y. & Wang, J. Z. (2017) From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front Neural Circuits, 11, 86.
Yoon, T. & Otto, T. (2007) Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiol Learn Mem, 87(4), 464-75.
Yu, C. L., Li, J. N., Gan, P., Wang, L. P., Yang, Y. X., Yu, D. F., Mao, R. R., Xu, F. Q., Zhou, Q. X., Richter-Levin, G., Xu, L. & Zhou, H. (2021) Developing of Focal Ischemia in the Hippocampus or the Amygdala Reveals a Regional Compensation Rule for Fear Memory Acquisition. eNeuro, 8(2).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *