帳號:guest(18.188.227.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許喬原
作者(外文):Hsu, Chiao-Yuan
論文名稱(中文):剔除內生性光敏感視網膜節細胞對視網膜血管發育及不同層血管距離的影響
論文名稱(外文):Loss of intrinsically photosensitive retinal ganglion cells affects the process of retinal vascular development and the distance between different vascular layers
指導教授(中文):焦傳金
指導教授(外文):Chiao, Chuan-Chin
口試委員(中文):陳令儀
陳示國
口試委員(外文):Chen, Lin-Yi
Chen, Shih-Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:109080512
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:61
中文關鍵詞:內生性光敏感視網膜節細胞視黑蛋白視網膜脈管系統血管發育視網膜光依賴性
外文關鍵詞:ipRGCsmelanopsinretinal vasculaturevascular developmentretinalight-dependency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
血管在器官的功能上扮演很重要的角色。因此,血管發育的過程是一個重要的研究主題。視網膜血管的發育過程是非常精確且由許多因子調控的,不正常發育的血管會導致早產兒視網膜病變以及視網膜營養缺乏,甚至可能導致胎兒失明。過去的研究顯示全暗養殖出生後的老鼠會表現更多血管內皮生長因子進而造成血管新生。現代社會經常暴露在長期的光照之下,這種環境可能會對發育中的胎兒造成影響。本研究使用內生性光敏感視網膜節細胞剔除的老鼠和視黑蛋白基因剔除的老鼠以及在恆亮環境下發育的老鼠,我們檢視出生後8天、11天和15天的老鼠視網膜血管發育。結果顯示在持續光照下養殖的老鼠表現正常的血管發育;而失去內生性光敏感視網膜節細胞的老鼠,不只在血管發育的速度上變快,在不同層血管之間的距離也變寬。由此得知,內生性光敏感視網膜節細胞或許可以在持續的光照下自我調節,且內生性光敏感視網膜節細胞對於視網膜的血管發育有重大影響。這項研究探索了神經血管的交互作用的可調控性,希望這項研究在未來能對於器官內血管發育的研究留下一些線索。
Blood vessels play an important role in the function of organs. The process of developing vessels is a solid topic to study as well. In the eye ball, the developmental process of retinal vessels is very precise and is controlled by a lot of factors. Abnormal development of retinal vessels may cause retinopathy of prematurity and nutrient lacking in the retina or even blind after birth. It has been reported that the dark-reared mice express more VEGF and angiogenesis in postnatal retina. However, the modern day life frequently exposes to long-term light environment. This type of lifestyle may cause an impact on people’s health, especially the developmental fetus in the pregnant mother. By using ipRGCs and melanopsin knockout mice and the mice under constant light condition, we examined the retinal vascular development in postnatal days 8, 11, and 15. In this study, we found that the progress of retinal vessel development in mice is similar under both 24-hours light and 12-hours light conditions, and loss of ipRGCs not only affects the process of retinal vascular development, but also affects the distance of different retinal vascular layers. These suggest that ipRGCs could self-regulate in constant light environment and control general retinal angiogenesis. This study explores the neurovascular interaction and provides insights for researches of regulating vasculature development in other organs.
摘要 2
Abstract 3
致謝 5
Chapter 1. Introduction 7
Chapter 2. Materials and methods 12
2-1 Animals 12
2-2 Preparation for wholemount retinas 12
2-3 Immunohistochemistry 13
2-4 Retinal angiogenesis quantification 14
2-5 Statistics 15
Chapter 3. Results 16
3-1 24-hours light environment does not affect retinal angiogenesis in postnatal mice. 16
3-2 Loss of ipRGCs affects the retinal angiogenesis in postnatal mice. 18
Chapter 4. Discussion 20
4-1 24-hours light environment does not affect retinal vascular density in postnatal mice. 20
4-2 Interaction between light, ipRGCs, and the retinal dopamine system. 21
4-3 Loss of ipRGCs photosensitivity promotes the retinal angiogenesis and expands the distance between retinal vascular layers in postnatal mice. 23
4-4 The distance between different vascular layers is altered by ipRGCs deletion in postnatal mice. 25
References 28
Figures 32
Arroyo, D.A., Kirkby, L.A., and Feller, M.B. (2016). Retinal waves modulate an intraretinal circuit of intrinsically photosensitive retinal ganglion cells. Journal of Neuroscience 36, 6892-6905.
Berkowitz, B.A., Roberts, R., and Bissig, D. (2010). Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI. Molecular Vision 16, 1776.
Berkowitz, B.A., Schmidt, T., Podolsky, R.H., and Roberts, R. (2016). Melanopsin phototransduction contributes to light-evoked choroidal expansion and rod L-type calcium channel function in vivo. Investigative ophthalmology & visual science 57, 5314-5319.
Biswas, S., Cottarelli, A., and Agalliu, D. (2020). Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 147, dev182279.
Cao, R., Xue, Y., Hedlund, E.-M., Zhong, Z., Tritsaris, K., Tondelli, B., Lucchini, F., Zhu, Z., Dissing, S., and Cao, Y. (2010). VEGFR1–mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proceedings of the National Academy of Sciences 107, 856-861.
Caval-Holme, F., Zhang, Y., and Feller, M.B. (2019). Gap junction coupling shapes the encoding of light in the developing retina. Current Biology 29, 4024-4035. e4025.
Chen, S.-K., Badea, T., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92-95.
Chew, K.S., Renna, J.M., McNeill, D.S., Fernandez, D.C., Keenan, W.T., Thomsen, M.B., Ecker, J.L., Loevinsohn, G.S., VanDunk, C., and Vicarel, D.C. (2017). A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. Elife 6, e22861.
Do, M.T.H., and Yau, K.-W. (2013). Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences 110, 7470-7475.
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49-60.
Fruttiger, M. (2007). Development of the retinal vasculature. Angiogenesis 10, 77-88.
Hannibal, J., and Fahrenkrug, J. (2004). Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15, 2317-2320.
Hannibal, J., Georg, B., Hindersson, P., and Fahrenkrug, J. (2005). Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat. Journal of molecular neuroscience 27, 147-155.
Hannibal, J., Kankipati, L., Strang, C., Peterson, B., Dacey, D., and Gamlin, P. (2014). Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. Journal of Comparative Neurology 522, 2231-2248.
Jidigam, V.K., Sawant, O.B., Fuller, R.D., Wilcots, K., Singh, R., Lang, R.A., and Rao, S. (2022). Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Communications Biology 5, 1-11.
Kirkby, L.A., and Feller, M.B. (2013). Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proceedings of the National Academy of Sciences 110, 12090-12095.
LeGates, T.A., Fernandez, D.C., and Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience 15, 443-454.
Mure, L.S. (2021). Intrinsically photosensitive retinal ganglion cells of the human retina. Frontiers in neurology 12, 636330.
Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. The FASEB journal 13, 9-22.
Nguyen, M.-T.T., Vemaraju, S., Nayak, G., Odaka, Y., Buhr, E.D., Alonzo, N., Tran, U., Batie, M., Upton, B.A., and Darvas, M. (2019). An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nature cell biology 21, 420-429.
Okabe, K., Kobayashi, S., Yamada, T., Kurihara, T., Tai-Nagara, I., Miyamoto, T., Mukouyama, Y.-s., Sato, T.N., Suda, T., and Ema, M. (2014). Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584-596.
Prigge, C.L., Yeh, P.-T., Liou, N.-F., Lee, C.-C., You, S.-F., Liu, L.-L., McNeill, D.S., Chew, K.S., Hattar, S., and Chen, S.-K. (2016). M1 ipRGCs influence visual function through retrograde signaling in the retina. Journal of Neuroscience 36, 7184-7197.
Rao, S., Chun, C., Fan, J., Kofron, J.M., Yang, M.B., Hegde, R.S., Ferrara, N., Copenhagen, D.R., and Lang, R.A. (2013). A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243-246.
Renna, J.M., Weng, S., and Berson, D.M. (2011). Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nature neuroscience 14, 827-829.
Sapieha, P., Sirinyan, M., Hamel, D., Zaniolo, K., Joyal, J.-S., Cho, J.-H., Honoré, J.-C., Kermorvant-Duchemin, E., Varma, D.R., and Tremblay, S. (2008). The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature medicine 14, 1067-1076.
Schmidt, T.M., Chen, S.-K., and Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in neurosciences 34, 572-580.
Sekaran, S., Lupi, D., Jones, S., Sheely, C., Hattar, S., Yau, K.-W., Lucas, R., Foster, R., and Hankins, M. (2005). Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Current Biology 15, 1099-1107.
Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes & cancer 2, 1097-1105.
Stahl, A., Connor, K.M., Sapieha, P., Chen, J., Dennison, R.J., Krah, N.M., Seaward, M.R., Willett, K.L., Aderman, C.M., and Guerin, K.I. (2010). The mouse retina as an angiogenesis model. Investigative ophthalmology & visual science 51, 2813-2826.
Stefater III, J.A., Lewkowich, I., Rao, S., Mariggi, G., Carpenter, A.C., Burr, A.R., Fan, J., Ajima, R., Molkentin, J.D., and Williams, B.O. (2011). Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature 474, 511-515.
Stone, J., Itin, A., Alon, T., Pe'Er, J., Gnessin, H., Chan-Ling, T., and Keshet, E. (1995). Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. Journal of Neuroscience 15, 4738-4747.
Uemura, A., Fruttiger, M., D'Amore, P.A., De Falco, S., Joussen, A.M., Sennlaub, F., Brunck, L.R., Johnson, K.T., Lambrou, G.N., and Rittenhouse, K.D. (2021). VEGFR1 signaling in retinal angiogenesis and microinflammation. Progress in retinal and eye research 84, 100954.
Van Hook, M.J., Wong, K.Y., and Berson, D.M. (2012). Dopaminergic modulation of ganglion‐cell photoreceptors in rat. European Journal of Neuroscience 35, 507-518.
Vemaraju, S., Nayak, G., Miller, W.E., Copenhagen, D.R., and Lang, R.A. (2019). Fetal stage melanopsin (OPN4) and GNAQ (Gαq) signaling regulates vascular development of the eye. BioRxiv, 537225.
Versace, E., Sgadò, P., George, J., Loveland, J.L., Ward, J., Thorpe, P., Jensen, L.J., Spencer, K.A., Paracchini, S., and Vallortigara, G. (2022). Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Scientific Reports 12, 1-12.
Weiner, G., Shah, S., Angelopoulos, C., Bartakova, A., Pulido, R., Murphy, A., Nudleman, E., Daneman, R., and Goldberg, J. (2019). Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nature communications 10, 1-10.
Wong, K.Y., Dunn, F.A., and Berson, D.M. (2005). Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 1001-1010.
Zele, A.J., Feigl, B., Smith, S.S., and Markwell, E.L. (2011). The circadian response of intrinsically photosensitive retinal ganglion cells. PLOS one 6, e17860.
Krock, B.L., Skuli, N., and Simon, M.C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes & cancer 2, 1117-1133.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *