|
Arroyo, D.A., Kirkby, L.A., and Feller, M.B. (2016). Retinal waves modulate an intraretinal circuit of intrinsically photosensitive retinal ganglion cells. Journal of Neuroscience 36, 6892-6905. Berkowitz, B.A., Roberts, R., and Bissig, D. (2010). Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI. Molecular Vision 16, 1776. Berkowitz, B.A., Schmidt, T., Podolsky, R.H., and Roberts, R. (2016). Melanopsin phototransduction contributes to light-evoked choroidal expansion and rod L-type calcium channel function in vivo. Investigative ophthalmology & visual science 57, 5314-5319. Biswas, S., Cottarelli, A., and Agalliu, D. (2020). Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 147, dev182279. Cao, R., Xue, Y., Hedlund, E.-M., Zhong, Z., Tritsaris, K., Tondelli, B., Lucchini, F., Zhu, Z., Dissing, S., and Cao, Y. (2010). VEGFR1–mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proceedings of the National Academy of Sciences 107, 856-861. Caval-Holme, F., Zhang, Y., and Feller, M.B. (2019). Gap junction coupling shapes the encoding of light in the developing retina. Current Biology 29, 4024-4035. e4025. Chen, S.-K., Badea, T., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92-95. Chew, K.S., Renna, J.M., McNeill, D.S., Fernandez, D.C., Keenan, W.T., Thomsen, M.B., Ecker, J.L., Loevinsohn, G.S., VanDunk, C., and Vicarel, D.C. (2017). A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. Elife 6, e22861. Do, M.T.H., and Yau, K.-W. (2013). Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences 110, 7470-7475. Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49-60. Fruttiger, M. (2007). Development of the retinal vasculature. Angiogenesis 10, 77-88. Hannibal, J., and Fahrenkrug, J. (2004). Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15, 2317-2320. Hannibal, J., Georg, B., Hindersson, P., and Fahrenkrug, J. (2005). Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat. Journal of molecular neuroscience 27, 147-155. Hannibal, J., Kankipati, L., Strang, C., Peterson, B., Dacey, D., and Gamlin, P. (2014). Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. Journal of Comparative Neurology 522, 2231-2248. Jidigam, V.K., Sawant, O.B., Fuller, R.D., Wilcots, K., Singh, R., Lang, R.A., and Rao, S. (2022). Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Communications Biology 5, 1-11. Kirkby, L.A., and Feller, M.B. (2013). Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proceedings of the National Academy of Sciences 110, 12090-12095. LeGates, T.A., Fernandez, D.C., and Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience 15, 443-454. Mure, L.S. (2021). Intrinsically photosensitive retinal ganglion cells of the human retina. Frontiers in neurology 12, 636330. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. The FASEB journal 13, 9-22. Nguyen, M.-T.T., Vemaraju, S., Nayak, G., Odaka, Y., Buhr, E.D., Alonzo, N., Tran, U., Batie, M., Upton, B.A., and Darvas, M. (2019). An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nature cell biology 21, 420-429. Okabe, K., Kobayashi, S., Yamada, T., Kurihara, T., Tai-Nagara, I., Miyamoto, T., Mukouyama, Y.-s., Sato, T.N., Suda, T., and Ema, M. (2014). Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584-596. Prigge, C.L., Yeh, P.-T., Liou, N.-F., Lee, C.-C., You, S.-F., Liu, L.-L., McNeill, D.S., Chew, K.S., Hattar, S., and Chen, S.-K. (2016). M1 ipRGCs influence visual function through retrograde signaling in the retina. Journal of Neuroscience 36, 7184-7197. Rao, S., Chun, C., Fan, J., Kofron, J.M., Yang, M.B., Hegde, R.S., Ferrara, N., Copenhagen, D.R., and Lang, R.A. (2013). A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243-246. Renna, J.M., Weng, S., and Berson, D.M. (2011). Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nature neuroscience 14, 827-829. Sapieha, P., Sirinyan, M., Hamel, D., Zaniolo, K., Joyal, J.-S., Cho, J.-H., Honoré, J.-C., Kermorvant-Duchemin, E., Varma, D.R., and Tremblay, S. (2008). The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature medicine 14, 1067-1076. Schmidt, T.M., Chen, S.-K., and Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in neurosciences 34, 572-580. Sekaran, S., Lupi, D., Jones, S., Sheely, C., Hattar, S., Yau, K.-W., Lucas, R., Foster, R., and Hankins, M. (2005). Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Current Biology 15, 1099-1107. Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes & cancer 2, 1097-1105. Stahl, A., Connor, K.M., Sapieha, P., Chen, J., Dennison, R.J., Krah, N.M., Seaward, M.R., Willett, K.L., Aderman, C.M., and Guerin, K.I. (2010). The mouse retina as an angiogenesis model. Investigative ophthalmology & visual science 51, 2813-2826. Stefater III, J.A., Lewkowich, I., Rao, S., Mariggi, G., Carpenter, A.C., Burr, A.R., Fan, J., Ajima, R., Molkentin, J.D., and Williams, B.O. (2011). Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature 474, 511-515. Stone, J., Itin, A., Alon, T., Pe'Er, J., Gnessin, H., Chan-Ling, T., and Keshet, E. (1995). Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. Journal of Neuroscience 15, 4738-4747. Uemura, A., Fruttiger, M., D'Amore, P.A., De Falco, S., Joussen, A.M., Sennlaub, F., Brunck, L.R., Johnson, K.T., Lambrou, G.N., and Rittenhouse, K.D. (2021). VEGFR1 signaling in retinal angiogenesis and microinflammation. Progress in retinal and eye research 84, 100954. Van Hook, M.J., Wong, K.Y., and Berson, D.M. (2012). Dopaminergic modulation of ganglion‐cell photoreceptors in rat. European Journal of Neuroscience 35, 507-518. Vemaraju, S., Nayak, G., Miller, W.E., Copenhagen, D.R., and Lang, R.A. (2019). Fetal stage melanopsin (OPN4) and GNAQ (Gαq) signaling regulates vascular development of the eye. BioRxiv, 537225. Versace, E., Sgadò, P., George, J., Loveland, J.L., Ward, J., Thorpe, P., Jensen, L.J., Spencer, K.A., Paracchini, S., and Vallortigara, G. (2022). Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Scientific Reports 12, 1-12. Weiner, G., Shah, S., Angelopoulos, C., Bartakova, A., Pulido, R., Murphy, A., Nudleman, E., Daneman, R., and Goldberg, J. (2019). Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nature communications 10, 1-10. Wong, K.Y., Dunn, F.A., and Berson, D.M. (2005). Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 1001-1010. Zele, A.J., Feigl, B., Smith, S.S., and Markwell, E.L. (2011). The circadian response of intrinsically photosensitive retinal ganglion cells. PLOS one 6, e17860. Krock, B.L., Skuli, N., and Simon, M.C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes & cancer 2, 1117-1133.
|