|
1. Alonso, A. and R. Pulido, The extended human PTPome: a growing tyrosine phosphatase family (vol 283, pg 1404, 2016). Febs Journal, 2016. 283(11): p. 2197-2201. 2. ThomasFriedrich, K.H.a., Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Pharmacology, 10 February 2015. 3. Tonks, N.K., Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. Febs Journal, 2013. 280(2): p. 346-378. 4. Mustelin, T., T. Vang, and N. Bottini, Protein tyrosine phosphatases and the immune response. Nat Rev Immunol, 2005. 5(1): p. 43-57. 5. Kolmodin, K. and J. Aqvist, The catalytic mechanism of protein tyrosine phosphatases revisited. Febs Letters, 2001. 498(2-3): p. 208-213. 6. Pannifer, A.D.B., et al., Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray crystallography. Journal of Biological Chemistry, 1998. 273(17): p. 10454-10462. 7. Tonks, N.K., Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 2006. 7(11): p. 833-846. 8. Meeusen, B. and V. Janssens, Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. International Journal of Biochemistry & Cell Biology, 2018. 96: p. 98-134. 9. Hsu, F. and Y. Mao, The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. Front Biol (Beijing), 2013. 8(4): p. 395-407. 10. Nitzsche, A., Paladin is a PI(4,5)P2 phosphoinositide phosphatase that regulates endosomal signaling and angiogenesis. bioRxiv, 2020. 11. Nakada-Tsukui, K., et al., Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol, 2019. 9: p. 150. 12. Lydia Tabernero, A.R.A., E. Yvonne Jones and Stefan E. Szedlacsek Protein tyrosine phosphatases: structure–function relationships. Febs Journal, 18 December 2007. 13. Zhao, Y., et al., Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction - Probing the function of the invariant glutamine residues. Journal of Biological Chemistry, 1998. 273(10): p. 5484-5492. 14. Brandao, T.A.S., A.C. Hengge, and S.J. Johnson, Insights into the Reaction of Protein-tyrosine Phosphatase 1B CRYSTAL STRUCTURES FOR TRANSITION STATE ANALOGS OF BOTH CATALYTIC STEPS. Journal of Biological Chemistry, 2010. 285(21): p. 15874-15883. 15. ZHONG-YIN ZHANG, Y.W., AND JACK E. DIXON, Dissecting the catalytic mechanism of proteintyrosine phosphatases. Proc. Nati. Acad. Sci., 1994. 16. Andres Alonso, A.R., Adam Godzik, Tomas Mustelin, The dual-specific protein tyrosine phosphatase family. Topics in Current Genetics, 2004. 17. Ala, P.J., et al., Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J Biol Chem, 2006. 281(49): p. 38013-21. 18. Keyse, S.M., Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 2000. 12(2): p. 186-192. 19. Lang, R. and F.A.M. Raffi, Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci, 2019. 20(11). 20. Wishart, M.J. and J.E. Dixon, PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol, 2002. 12(12): p. 579-85. 21. Ohta, Y., et al., Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells, 2003. 8(10): p. 811-24. 22. Yu, Y., et al., Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res, 2007. 67(1): p. 130-8. 23. Manzano-Lopez, J. and F. Monje-Casas, The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci, 2020. 21(3). 24. Zeng, Q., W. Hong, and Y.H. Tan, Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun, 1998. 244(2): p. 421-7. 25. Denu, J.M. and J.E. Dixon, A Catalytic Mechanism for the Dual-Specific Phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(13): p. 5910-5914. 26. Lai, C.H., et al., Structural Insights into the Active Site Formation of DUSP22 in N-loop-containing Protein Tyrosine Phosphatases. International Journal of Molecular Sciences, 2020. 21(20). 27. 陳重佑, Study on the structure and function of DPN-triloop interaction in human dual-specificity phosphatase 10. 2022. 28. Won, E.Y., et al., High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. Acta Crystallogr D Biol Crystallogr, 2013. 69(Pt 6): p. 1160-70. 29. Thompson, E.M. and A.W. Stoker, A Review of DUSP26: Structure, Regulation and Relevance in Human Disease. International Journal of Molecular Sciences, 2021. 22(2). 30. Ravi Kumar Lokareddy, A.B., and Gino Cingolani, Atomic structure of DUSP26, a novel p53 phosphatase. Biochemistry, 2013 February 5. 31. Ren, J.X., et al., Identification of novel dual-specificity phosphatase 26 inhibitors by a hybrid virtual screening approach based on pharmacophore and molecular docking. Biomed Pharmacother, 2017. 89: p. 376-385. 32. Won, E.Y., et al., Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. Plos One, 2016. 11(9). 33. Afonine, P.V., et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D-Structural Biology, 2012. 68: p. 352-367. 34. Emsley, P., et al., Features and development of Coot. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 486-501. 35. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589. 36. Gautam, B., Energy Minimization. IntechOpen, 2022. 37. Gannam, Z.T.K., et al., An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Science Signaling, 2020. 13(646). 38. Ursu, O., et al., DrugCentral: online drug compendium. Nucleic Acids Res, 2017. 45(D1): p. D932-D939. 39. Ben Chorin, A., et al., ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci, 2020. 29(1): p. 258-267. 40. Wang, Z.J., L. Sun, and T. Heinbockel, Resibufogenin and cinobufagin activate central neurons through an ouabain-like action. PLoS One, 2014. 9(11): p. e113272. 41. Grinchii, D. and E. Dremencov, Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int J Mol Sci, 2020. 21(24). 42. Bixel, K. and J.L. Hays, Olaparib in the management of ovarian cancer. Pharmgenomics Pers Med, 2015. 8: p. 127-35.
|