帳號:guest(3.146.152.23)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃姿庭
作者(外文):Huang, Tzu-Ting
論文名稱(中文):以成交量預測股票波動率—以台灣股票市場為例
論文名稱(外文):Using trading volume to forecast stock volatility –take Taiwan stock market as an example
指導教授(中文):蔡子晧
指導教授(外文):Tsai, Tzu-Hao
口試委員(中文):余士迪
謝佩芳
李彥賢
口試委員(外文):Yu, Shih-Ti
Hsieh, Pei-Fang
Lee, Yen-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:財務金融碩士在職專班
學號:109079510
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:32
中文關鍵詞:波動率Fama-French三因子模型成交量
外文關鍵詞:stock volatilityFama-French three-factor modeltrading volume
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本次研究目的旨在驗證在已知上期股票波動率會影響本期股票波動率此前提之下,增加上期股票成交量變動率並以 Fama-French 三因子模型中三個因子 (市場風險溢酬、規模溢酬及淨值市價比溢酬) 平方作為控制變數,檢測新增的自變數是否能夠解釋並使預測未來股票波動率較為準確。藉由迴歸分析可以發現,上期股票波動率對於本期股票波動率有正向影響力。而在上期成交量變動率方面,則為負顯著。最後,Fama-French 三因子平方方面,最多股票在上期規模溢酬平方正顯著、上期市場風險溢酬平方次之、上期淨值市價比溢酬平方最少,且後兩因子均各有三檔股票為負顯著。最後再以移動視窗法比較有無上期成交量變動率迴歸模型兩者之樣本外資料預測能力,發現不含該自變數之模型預測能力較好,但相距不大,故上期成交量變動率對於預測波動率無明顯助益。
We aim to verify that the last period of stock volatility is known to affect the stock volatility of the current period, to increase the last period of volume change rate, and to use the square of the three factors in the Fama-French three-factor model(excess return on the market, the size of firms and book-to-market values)as the control variable, to detect whether the new independent variable can explain and predict future stock volatility better. Through regression analysis, it can be found that the last period of stock volatility has a significant positive effect on the stock volatility of the current period. For the last period of volume change rate, it was negatively significant. Finally, in terms of the square of the three factors of Fama-French, the most positive significant factor that stocks have is the last period of the size of firms, the second is the last period of excess return on the market, last period of book-to-market values is the least. And 3 stocks in the latter two factors are negative significant. Finally, we used the moving window method to verify whether the predictive model with the change rate of the previous stock volume has better predictive power. It is found that the prediction ability of the predictive model without the change rate of the previous stock volume is better, so the change rate of the previous stock volume does not help predict the volatility.
第一章 緒論------------------------------------1
第一節 研究背景及動機--------------------------1
第二節 研究目的及結果--------------------------1
第三節 研究架構-------------------------------3
第二章 文獻回顧--------------------------------4
第一節 預測波動率之統計假設模型-----------------4
第二節 預測波動率或波動率和成交量相關之文獻------5
第三章 研究方法--------------------------------7
第一節 資料-----------------------------------7
第二節 模型介紹--------------------------------9
第四章 實證結果分析----------------------------15
第一節 敘述統計量-----------------------------15
第二節 變異數膨脹因子診斷----------------------18
第三節 迴歸分析-------------------------------19
第四節 樣本外預測結果--------------------------21
第五章 結論與建議-------------------------------23
第一節 結論-----------------------------------23
第二節 未來研究建議----------------------------24
附錄 ---------------------------------------------25
參考文獻------------------------------------------31
1.陳旭昇 (2013). 時間序列分析: 總體經濟與財務金融之應用, 臺灣東華.
2.Admati, A. R. and P. Pfleiderer (1988). "A theory of intraday patterns: Volume and price variability." The review of financial studies 1(1): 3-40.
3.Bessembinder, H. and P. J. Seguin (1993). "Price volatility, trading volume, and market depth: Evidence from futures markets." Journal of Financial and Quantitative Analysis 28(1): 21-39.
4.Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity." Journal of econometrics 31(3): 307-327.
5.Clark, P. K. (1973). "A subordinated stochastic process model with finite variance for speculative prices." Econometrica: Journal of the econometric society: 135-155.
6.Engle, R. F. (1982). "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation." Econometrica: Journal of the econometric society: 987-1007.
7.Granger, C. W. and P. Newbold (1974). "Spurious regressions in econometrics." Journal of econometrics 2(2): 111-120.
8.Hull, J. C. (2003). Options futures and other derivatives, Pearson Education India.
9.Karpoff, J. M. (1987). "The relation between price changes and trading volume: A survey." Journal of Financial and Quantitative Analysis 22(1): 109-126.
10.Kwiatkowski, D., et al. (1992). "Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?" Journal of econometrics 54(1-3): 159-178.
11.Morgan, J. (1995). "RiskMetrics Monitor." Fourth Quarter.
12.Nelson, C. R. and C. R. Plosser (1982). "Trends and random walks in macroeconmic time series: some evidence and implications." Journal of monetary economics 10(2): 139-162.
13.Nelson, D. B. (1991). "Conditional heteroskedasticity in asset returns: A new approach." Econometrica: Journal of the econometric society: 347-370.
14.Rabemananjara, R. and J.-M. Zakoian (1993). "Threshold ARCH models and asymmetries in volatility." Journal of applied econometrics 8(1): 31-49.
15.Said, S. E. and D. A. Dickey (1984). "Testing for unit roots in autoregressive-moving average models of unknown order." Biometrika 71(3): 599-607.
16.Shaikh, I. and P. Padhi (2015). "The implied volatility index: Is ‘investor fear gauge’or ‘forward-looking’?" Borsa Istanbul Review 15(1): 44-52.
17.Xing, Y., et al. (2010). "What does the individual option volatility smirk tell us about future equity returns?" Journal of Financial and Quantitative Analysis 45(3): 641-662.
18.Yin-Wong, C. and M. D. Chinn (1996). "Deterministic, stochastic, and segmented trends in aggregate output: a cross-country analysis." Oxford Economic Papers 48(1): 134-162.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *