|
1. Ahamed, S. S. (2010). Studying the feasibility and importance of software testing: An Analysis. arXiv preprint arXiv:1001.4193.
2. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., ... & Zimmermann, T. (2019, May). Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 291-300). IEEE.
3. Bansal, S. K. (2014, June). Towards a semantic extract-transform-load (ETL) framework for big data integration. In 2014 IEEE International Congress on Big Data (pp. 522-529). IEEE.
4. Ben-Kiki, O., Evans, C., & Ingerson, B. (2009). YAML ain’t markup language (YAML)(tm) version 1.2. YAML. org, Tech. Rep, 359.
5. Bhosale, S. T., Patil, T., & Patil, P. (2015). Sqlite: Light database system. Int. J. Comput. Sci. Mob. Comput, 44(4), 882-885.
6. Blasch, E., Sung, J., Nguyen, T., Daniel, C. P., & Mason, A. P. (2019). Artificial intelligence strategies for national security and safety standards. arXiv preprint arXiv:1911.05727.
7. Carretero, A. G., Gualo, F., Caballero, I., & Piattini, M. (2017). MAMD 2.0: Environment for data quality processes implantation based on ISO 8000-6X and ISO/IEC 33000. Computer Standards & Interfaces, 54, 139-151.
8. Castro, S. (2022, April 30). The Importance of Data Engineering in the Era of Big Data. Jobsity. https://www.jobsity.com/blog/the-importance-of-data-engineering-in-the-era-of-big-data
9. Choudhury, S. (2021, April 1). The Pandemic’s Influence on Data Access and Digital Transformation. EnterpriseTalk. https://enterprisetalk.com/featured/the-pandemics-influence-on-data-access-and-digital-transformation/
10. Consel, C. (2004). From a program family to a domain-specific language. In Domain-Specific Program Generation (pp. 19-29). Springer, Berlin, Heidelberg.
11. Consel, C., & Marlet, R. (1998). Architecture software using: a methodology for language development. In Principles of Declarative Programming (pp. 170-194). Springer, Berlin, Heidelberg.
12. Consel, C., Latry, F., Réveillere, L., & Cointe, P. (2005, September). A generative programming approach to developing DSL compilers. In International Conference on Generative Programming and Component Engineering (pp. 29-46). Springer, Berlin, Heidelberg.
13. Danielson, S. (2022, January). pipeline definition. Microsoft. https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/pipeline?view=azure-pipelines#pipeline-stages
14. Dayal, U., Castellanos, M., Simitsis, A., & Wilkinson, K. (2009, March). Data integration flows for business intelligence. In Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology (pp. 1-11).
15. De Souza, C. R., Redmiles, D., Cheng, L. T., Millen, D., & Patterson, J. (2004, October). How a good software practice thwarts collaboration: the multiple roles of APIs in software development. In Proceedings of the 12th ACM SIGSOFT twelfth international symposium on Foundations of software engineering (pp. 221-230).
16. DeLine, R. A. (2021, May). Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-11).
17. des Rivières, J. (2004). Eclipse APIs: Lines in the sand. EclipseCon Retrieved March, 18, 2004.
18. Dupor, S., & Jovanović, V. (2014, May). An approach to conceptual modelling of ETL processes. In 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1485-1490). IEEE.
19. Eriksson, M., & Hallberg, V. (2011). Comparison between JSON and YAML for data serialization. The School of Computer Science and Engineering Royal Institute of Technology, 1-25.
20. Freitas, A., Kämpgen, B., Oliveira, J. G., O’Riain, S., & Curry, E. (2012, May). Representing interoperable provenance descriptions for ETL workflows. In Extended Semantic Web Conference (pp. 43-57). Springer, Berlin, Heidelberg.
21. Friesen, J. (2016). Java XML and JSON. New York, NY, USA:: Apress.
22. Friesen, J. (2019). Extracting JSON values with JsonPath. In Java XML and JSON (pp. 299-322). Apress, Berkeley, CA.
23. Ghosh, S. (2022, May 23). Prefect vs Airflow: The Battle of Workflow Management Tools. Medium. https://medium.com/censius/prefect-vs-airflow-the-battle-of-workflow-management-tools-a5e4cc90116c
24. Gill, S. (2022, February 10). 7 Best Airflow Alternatives for 2022. Hevo. https://hevodata.com/learn/airflow-alternatives/#prefect
25. GitHub. (n.d.). Workflow syntax for GitHub Actions. Github. https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onworkflow_callinputs
26. Good, J. (2021, October 20). Lay a data pipeline: Exposing the gaps in today’s business intelligence market. CIO. https://www.cio.com/article/189444/lay-a-data-pipeline-exposing-the-gaps-in-today-s-business-intelligence-market.html
27. Groff, J. R., Weinberg, P. N., & Oppel, A. J. (2002). SQL: the complete reference (Vol. 2). McGraw-Hill/Osborne.
28. Hansen, P. B. (1973). Concurrent programming concepts. ACM Computing Surveys (CSUR), 5(4), 223-245.
29. Horgan, D., Hackett, J., Westphalen, C. B., Kalra, D., Richer, E., Romao, M., ... & Montserrat, A. (2020). Digitalisation and COVID-19: the perfect storm. Biomedicine Hub, 5(3), 1-23.
30. Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces. Human–computer interaction, 1(4), 311-338.
31. InfoWorld. (2020, October 05). InfoWorld Announces 2020 Bossie Award Winners for the Most Innovative Open Source Projects and Next Generation Tools. GlobeNewswire. https://www.globenewswire.com/news-release/2020/10/05/2103691/0/en/InfoWorld-Announces-2020-Bossie-Award-Winners-for-the-Most-Innovative-Open-Source-Projects-and-Next-Generation-Tools.html
32. Jovanovic, P., Nadal, S., Romero, O., Abelló, A., & Bilalli, B. (2021). Quarry: a user-centered big data integration platform. Information Systems Frontiers, 23(1), 9-33.
33. Kargín, Y., Ivanova, M., Zhang, Y., Manegold, S., & Kersten, M. (2013). Lazy ETL in action: ETL technology dates scientific data. Proceedings of the VLDB Endowment, 6(12), 1286-1289.
34. Kong, Q., Siauw, T., & Bayen, A. (2020). Python Programming and Numerical Methods: A Guide for Engineers and Scientists. Academic Press.
35. Larman, C. (2001). Protected variation: The importance of being closed. IEEE Software, 18(3), 89-91.
36. Li, H. Q. (2018). 探索模組相依網絡與共同提交者網絡:以了解程式模組在生態系統中是否將被停止維護 [master's thesis, National Tsing Hua University]. airiti Library. https://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0016-1803201914455953
37. Liu, X., & Iftikhar, N. (2015, April). An ETL optimization framework using partitioning and parallelization. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 1015-1022).
38. Meesters, M., Heck, P., & Serebrenik, A. (2022, March). What Is an AI Engineer? An Empirical Analysis of Job Ads in The Netherlands. In International Conference on AI Engineering: Software Engineering for AI. IEEE Computer Society.
39. Munappy, A. R., Bosch, J., & Olsson, H. H. (2020, November). Data pipeline management in practice: Challenges and opportunities. In International Conference on Product-Focused Software Process Improvement (pp. 168-184). Springer, Cham.
40. Nikolov, N., Dessalk, Y. D., Khan, A. Q., Soylu, A., Matskin, M., Payberah, A. H., & Roman, D. (2021). Conceptualization and scalable execution of big data workflows using domain-specific languages and software containers. Internet of Things, 16, 100440.
41. Nwokeji, J. C., & Matovu, R. (2021). A Systematic Literature Review on Big Data Extraction, Transformation and Loading (ETL). Intelligent Computing, 308-324.
42. Raman, K., Swaminathan, A., Gehrke, J., & Joachims, T. (2013, August). Beyond myopic inference in big data pipelines. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 86-94).
43. Sadowski, C., Ball, T., Bishop, J., Burckhardt, S., Gopalakrishnan, G., Mayo, J., ... & Toub, S. (2011, March). Practical parallel and concurrent programming. In Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 189-194).
44. Sharma, R., & Mathur, A. (2021). Configure Traefik. In Traefik API Gateway for Microservices (pp. 31-65). Apress, Berkeley, CA.
45. Shetty, A. (2021, September 19). PREFECT could be PERFECT. Medium. https://medium.com/geekculture/prefect-could-be-perfect-a318b9b1ad6e
46. Simitsis, A., Wilkinson, K., Dayal, U., & Castellanos, M. (2010, March). Optimizing ETL workflows for fault-tolerance. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010) (pp. 385-396). IEEE.
47. Tamir, M., Miller, S., & Gagliardi, A. (2015). The data engineer. Available at SSRN 2762013.
48. Teodoro, D. H., Choquet, R., Schober, D., Mels, G., Pasche, E., Ruch, P., & Lovis, C. (2011). Interoperability driven integration of biomedical data sources. Studies in health technology and informatics, 169, 185-9.
49. Theodorou, V., Abelló, A., & Lehner, W. (2014, September). Quality measures for ETL processes. In International Conference on Data Warehousing and Knowledge Discovery (pp. 9-22). Springer, Cham.
50. TOML. (n.d.) TOML. Github. https://github.com/toml-lang/toml
51. Tu, S., & Zhu, L. (2013, March). An optimized ETL fault-tolerant algorithm in data warehouses. In 2013 IEEE Third International Conference on Information Science and Technology (ICIST) (pp. 484-487). IEEE.
52. Warren, J., & Marz, N. (2015). Big Data: Principles and best practices of scalable realtime data systems. Simon and Schuster.
53. Wells, D. (2018, April 1). Data Engineering Coming of Age. Eckerson Group. https://www.eckerson.com/articles/data-engineering-coming-of-age
54. Wieland, K. M. (2017). Key Issues for Digital Transformation in the G20. Report prepared for a joint G20 German Presidency. OECD conference Berlin, Germany.
55. Yahui, Y. (2012, July). Impact data-exchange based on XML. In 2012 7th International Conference on Computer Science & Education (ICCSE) (pp. 1147-1149). IEEE.
56. Zhang, A. X., Muller, M., & Wang, D. (2020). How do data science workers collaborate? roles, workflows, and tools. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1), 1-23. |