|
Bai, S., Kolter, J. Z., & Koltun, V. (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv:1803.01271 Box, G. and Jenkins, G. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261-304. Campbell, J.Y., and Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies, 21, 1509-1531 Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211. Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, 38(1), 34-105. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work, 25 J. FIN. 383. Frank, M.Z., & Antweiler, W. (2001). Is All that Talk Just Noise? The Information Content of Internet Stock Message Boards. FEN: Behavioral Finance (Topic). Glaria, B. A., et al. (1996) “Stock market indices in Santiago de Chile: forecasting using neural networks,"IEEE International Conference on Neural Networks (4), 2172 -2175. Granger, C. W. J., and Morgenstern, O. (1970). Predictability of stock market prices. Heath Lexington Books Grudnistski, Gray and Osburn Larry, (1993), Forecasting S&P and Gold Futures Prices: An Application of Neural Networks, The Journal of Futures Markets 13(6), 631-643. Harris, M., Raviv, A. (1993). Differences of Opinion Make a Horse Race. The Review of Financial Studies 6, 473-506. Herzen, J., Lässig, F., Piazzetta, S.G., Neuer, T., Tafti, L., Raille, G., Pottelbergh, T.V., Pasieka, M., Skrodzki, A., Huguenin, N., Dumonal, M., Ko'scisz, J., Bader, D., Gusset, F., Benheddi, M., Williamson, C., Kosinski, M., Petrik, M., & Grosch, G. (2021). Darts: User-Friendly Modern Machine Learning for Time Series. ArXiv:2110.03224. Hochreiter S, Schmidhuber J. (1997). Long short-term memory. Neural Comput. 15;9(8):1735-80. Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(3), 1-22. Jaffe, J., & Westerfield, R. (1985). The Week-End Effect in Common Stock Returns: The International Evidence. The Journal of Finance, 40(2), 433-454. Jordan, M I. (1985-1986). Serial order: a parallel distributed processing approach. Technical report, United States. Kenneth R. French. (1980). Stock returns and the weekend effect,Journal of Financial Economics,8(1),55-69 Keim DB, Stambaugh RF. (1984). A further investigation of the weekend effect in stock returns. The Journal of Finance, 39(3):819-835 Kingma, D. P. & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv:1412.6980 . Lakonishok, J., & Levi, M.D. (1982). Weekend Effects on Stock Returns: A Note. The Journal of Finance, 37, 883-889. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., Stoica, I.(2018). Tune:A Research Platform for Distributed Model Selection and Training. ArXiv:1807.05118. Lina Ni, Yujie Li, Xiao Wang, Jinquan Zhang, Jiguo Yu, Chengming Qi.(2019) Forecasting of Forex Time Series Data Based on Deep Learning, Procedia Computer Science, 147, 647-652 Marszałek, A., and Burczyński, T. (2014). Modeling and forecasting financial time series with ordered fuzzy candlesticks. Information sciences, 273 ,144-155. Mills, T. C., and Markellos, R. N. (2008). The econometric modelling of financial time series. Cambridge University Press Oreshkin, B.N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. ArXiv:1905.10437.. Pai,P.-F., & Lin,C.-S.(2005).A hybrid ARIMA and support vector machines model in stock price forecasting, Omega, 33, 497- 505. Remy, P. (2020). https://github.com/philipperemy/n-beats Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536. Wanjawa, B.W., & Muchemi, L. (2015). ANN Model to Predict Stock Prices at Stock Exchange Markets. ArXiv:1502.06434. Yim, J. “A comparison of neural networks with time series models for forecasting returns on a stock market index,"Lecture Notes in Computer Science 2002, 25-35 Zhao, Z., Rao, R., Tu, S., & Shi, J. (2017). Time-Weighted LSTM Model with Redefined Labeling for Stock Trend Prediction. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 1210-1217.
|