|
1. Calomiris, C. W. and H. Mamaysky (2019), “How news and its context drive risk and returns around the world,” Journal of Financial Economics, 133, 299-336. 2. Chemtob, C. M., H. L. Roitblat, R. S. Hamada, M. Y. Muraoka, J. G. Carlson and G. B. Bauer (1999), “Compelled Attention: The Effects of Viewing Trauma-Related Stimuli on Concurrent Task Performance in Posttraumatic Stress Disorder,” Journal of Traumatic Stress, 12, 309-326. 3. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2018) “Bert: Pre- training of deep bidirectional transformers for language understanding,“ arXiv preprint arXiv:1810.04805. 4. Dietterich, T. G. (2000) “Ensemble Methods in Machine Learning,” In Proceedings of the International Workshop on Multiple Classifier Systems, 1-15. 5. Edmans, A., A. Fernandez-Perez, A. Garel and I. Indriawan (2021), “Music Sentiment and Stock Returns Around the World,” Journal of Financial Economics, Forthcoming. 6. Edmans, A., D. Garcia and O. Norli (2007), “Sports Sentiment and Stock Returns,” Journal of Finance, 62, 1967-1998. 7. Frid-Adar, M., I. Diamant, E. Klang, M. Amitai, J. Goldberger and H. Greenspan (2018), “GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification,” Neurocomputing, 321, 321-331. 8. Garcia, D. (2013), “Sentiment during Recessions,” Journal of Finance, 68, 1267-1300. 9. Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai and T. Chen (2018), “Recent advances in convolutional neural networks,” Pattern Recognition, 77, 354-377. 10. Hirshleifer, D. and T. Shumway (2003), “Good Day Sunshine: Stock Returns and the Weather,” Journal of Finance, 58, 1009-1032. 11. Loey, M., G. Manogaran, M. H. N. Taha and N. E. M. Khalifa (2021), “A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic,” Measurement, 167, 108288. 12. Loughran, T. and B. Mcdonald (2011), “When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks,” Journal of Finance, 66, 35-65. 13. Manela, A. and A. Moreira (2017), “News implied volatility and disaster concerns,” Journal of Financial Economics, 123, 137-162. 14. O’shea, K. and R. Nash (2015), “An Introduction to Convolutional Neural Networks,” arXiv preprint arXiv: 1511.08458. 15. Obaid, K. and K. Pukthuanthong (2021), “A Picture is worth a Thousand Words: Measuring Investor Sentiment by Combining Machine Learning and Photos from News,” Journal of Financial Economics, 144, 273-297. 16. Opitz, D. and R. Maclin (1999), “Popular Ensemble Methods: An Empirical Study,” Journal of Artificial Intelligence Research, 11, 169-198. 17. Pires, T., E. Schlinger and D. Garrette (2019), “How multilingual is Multilingual BERT?,” Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4996-5001. 18. Powell, T. E., H. G. Boomgaarden, K. D. Swert and C. H. de Vreese (2015), “A Clearer Picture: The Contribution of Visuals and Text to Framing Effects,” Journal of Communication, 65, 997-1017. 19. Reimers, N. and I. Gurevych (2019), “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks,” arXiv preprint arXiv: 1908.10084. 20. Rokach, L. (2010), “Ensemble-based classifiers,” Artificial Intelligence Review, 33, 1-39. 21. Sharma, C., D. Bhageria, W. Scott, S. PYKL, A. Das, T. Chakraborty, V. Pulabaigari and B. Gamback (2020), “SemEval-2020 Task 8: Memotion Analysis- The Visuo-Lingual Metaphor!,” Proceedings of the 14th International Workshop on Semantic Evaluation, 759-773. 22. Sun, C., X. Qiu, Y. Xu and X. Huang (2019), “How to Fine-Tune BERT for Text Classification?,” arXiv preprint arXiv: 1905.05583. 23. Tan, M. and Q. V. Le (2019), “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” arXiv preprint arXiv: 1905.11946. 24. Tetlock, P. C. (2007), “Giving Content to Investor Sentiment: The Role of Media in the Stock Market,” Journal of Finance, 62, 1139-1168. 25. You, Q., J. Lou, H. Jin and J. Yang (2015), “Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks,” arXiv preprint arXiv: 1509.06041. 26. Zadeh, A., M. Chen, S. Poria, E. Cambria and L. P. Morency (2017), “Tensor Fusion Network for Multimodal Sentiment Analysis,” Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 1103-1114.
|