帳號:guest(3.141.201.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭睿為
作者(外文):Hsiao, Jui-Wei
論文名稱(中文):混和膠體粒子系統用以提高光子玻璃結構色特性之研究
論文名稱(外文):Study of mixing colloidal particles to enhance the characteristics of structure coloration in photonic glasses
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):莊偉綜
蔣酉旺
口試委員(外文):Chuang, Wei-Tsung
Chiang, Yeo-Wan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066701
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:73
中文關鍵詞:光子晶體結構色隨機最密堆積聚多巴胺聚苯乙烯
外文關鍵詞:photonic glassesstructure colorrandom closed-packingpolydopaminepolystyrene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來仿生研究的興起,對於由膠體結構所產生的結構色研究也越來越多,其中又以具有短程有序並表現出不隨角度變化非虹彩顏色的光子玻璃最受矚目。然而由於形狀因子及反向散射等影響,造成綠色及紅色的結構色表現並不佳,因此如何提升結構色的純度及飽和度即為本論文主要目標。
在本研究的第一部份中,我們透過實驗呈現了由聚苯乙烯(PS)球及聚多巴胺(PDA)球混和而成的光子玻璃其光學特性,藉由在混和系統中調整不同比例的PDA球來改善短波長峰值強度,增強結構色的表現。而在第二部分的研究中,則透過對PS-PDA混和系統的光學特性進行模擬,以LS演算法(Lubachevsky-Stillinger algorithm, LSA)生成最密球堆積模型,並將模擬與實驗結果進行比較及探討,結果顯示通過添加PDA球能有效的提高結構色表現,而對於實際的應用方面,則可透過PS-PDA混和比例的調整以及改進實驗方法等,來進一步實現更理想的結果。
In recent years, there has been a growing interest in biomimetic research, particularly in the study of structural colors produced by colloidal structures. Among them, photonic glasses that exhibit short-range order and non-iridescent colors have received significant attention. However, the performance of structural colors is not satisfactory due to some factors such as form factor and backscattering. Therefore, the main objective of this study is to improve the purity and saturation of structural colors.

In the first part of this research, we experimentally characterized the optical properties of photonic glasses based on the combination of polystyrene(PS) spheres and polydopamine(PDA) spheres. Different ratios PDA spheres were mixed in the blending systems to investigate the enhancement of structural colors by adjusting the intensity of the short-wavelength peak. In the second part of the study, we numerically simulated the optical properties of the PS-PDA blending systems. The closed-packing spheres were generated by the Lubachevsky-Stillinger algorithm (LSA). The simulation results were compared with the experimental measurements and their discrepancies were discussed. Our results show that by the addition of PDA spheres, the performance of structural color can be improved. Further performance enhancement may be obtained by the optimization of the mixing ratios in PS-PDA blending systems and the improvement of the experiments for practical realization.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
第一章 緒論 1
1.1 光子晶體簡介 1
1.2 晶體與非晶結構光學特性 2
1.2.1 晶體結構色光學特性 3
1.2.2 非晶體結構光學特性 5
1.3 球堆積之非晶結構 7
1.3.1 結構簡介 7
1.3.2 非晶膠體球堆積結構模擬 8
1.4 材料簡介及提高結構色方法探討 9
1.4.1 材料介紹 9
1.4.2 結構色峰值影響 12
1.5 研究動機 14
第二章 實驗方法 15
2.1 材料製備 15
2.1.1 聚多巴胺(polydopamaine, PDA)奈米球粒子製備 15
2.1.2 聚苯乙烯(polystyrene, PS)奈米球粒子製備 16
2.1.3 薄膜樣品製備 17
2.2 量測儀器 19
2.2.1 材料分析 19
2.2.2 結構分析 20
2.3 結構模擬方法 21
2.3.1 LS演算法(Lubachevsky-Stillinger algorithm, LSA) 21
2.3.2 光學分析方法 24
2.4 結構及結構色定義方法 25
2.4.1 徑向分布函數 25
2.4.1 CIE色度座標 26
2.4.2 純度&飽和度定義指標 28
第三章 短程有序膠體系統結構色特性研究 30
3.1 聚多巴胺及聚苯乙烯材料表徵 30
3.1.1 系統結構特性分析 30
3.1.2 系統光學特性分析 31
PS膠體粒子 31
PDA膠體粒子 34
3.2 SAXS小角度量測結果及特性分析 35
3.3 膠體混和系統分析 37
3.3.1 相同粒徑大小混和系統結構及光學特性分析 37
3.3.2 不同粒徑大小混和系統結構及光學特性分析 42
3.3.3 沉積厚度對系統結構及光學特性分析 45
3.4 結果討論 48
第四章 短程有序膠體系統結構色模擬分析與討論 49
4.1 SAXS小角度量測與擬和結果分析 49
4.2 模型建立與分析 51
4.2.1 最密球堆積系統模型建立 51
4.2.2 光學模擬特性與比較 55
4.3 膠體混和系統模擬結果比較 58
4.3.1 相同粒徑大小混和系統結構及光學特性模擬與比較 58
4.3.2 不同粒徑大小混和系統結構及光學特性模擬與比較 61
4.3.3 沉積厚度對系統結構及光學特性模擬與比較 64
4.4 結果討論 66
第五章 結果與未來展望 69
參考文獻 70

[1] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[2] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, ''Photonic crystals-molding the flow of light,'' Princeton University Press, p. 6, 1995.
[4] M. Kohri, Y. Nannichi, T. Taniguchi, and K. Kishikawa, "Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules," Journal of Materials Chemistry C, vol. 3, no. 4, pp. 720-724, 2015.
[5] Y. Takeoka, S. Yoshioka, A. Takano, S. Arai, K. Nueangnoraj, H. Nishihara, M. Teshima, Y. Ohtsuka, and T. Seki, "Production of colored pigments with amorphous arrays of black and white colloidal particles," Angewandte Chemie, vol. 125, no. 28, pp. 7402-7406, 2013.
[6] G. Isapour, M. Lattuada, ''Bioinspired stimuli-responsive color-changing systems,'' Advanced Materials, 30(19), p. 1707069, 2018.
[7] G. Chen, W. Hong, ''Mechanochromism of structural‐colored materials,'' Advanced Optical Materials, 8(19), p. 2000984, 2020.
[8] A. Saito, Y. Ishikawa, Y. Miyamura, M. A. Kasaya, Y. Kuwahara, ''Optimization of reproduced morpho-blue coloration,'' SPIE Proceedings, 6767, 2007.
[9] J. Teyssier, S. V. Saenko, D. Van Der Marel, and M. C. Milinkovitch, "Photonic crystals cause active colour change in chameleons," Nature Communications, vol. 6, no. 1, pp. 1-7, 2015.
[10] J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, "Coloration strategies in peacock feathers," Proceedings of the National Academy of Sciences, vol. 100, no. 22, pp. 12576-12578, 2003.
[11] J. Ballato, "Tailoring visible photonic bandgaps through microstructural order and coupled material effects in SiO2 colloidal crystals," Journal of the Optical Society of America B, vol. 17, no. 2, pp. 219-225, 2000.
[12] P. D. García, R. Sapienza, Á. Blanco, and C. López, "Photonic glass: a novel random material for light," Advanced Materials, vol. 19, no. 18, pp. 2597-2602, 2007.
[13] G. Shang, L. Maiwald, H. Renner, D. Jalas, M. Dosta, S. Heinrich, A. Petrov, M. Eich, ''Photonic glass for high contrast structural color,'' Scientific Reports, 8(1), 2018.
[14] G. Jacucci, S. Vignolini, L. Schertel, ''The limitations of extending nature’s color palette in correlated, disordered systems,'' Proceedings of the National Academy of Sciences, 117(38), pp. 23345–23349, 2020.
[15] B. Dong, X. Liu, T. Zhan, L. Jiang, H. Yin, F. Liu, and J. Zi, "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Optics Express, vol. 18, no. 14, pp. 14430-14438, 2010.
[16] E. R. Dufresne, H. Noh, V. Saranathan, S. G. Mochrie, H. Cao, and R. O. Prum, "Self-assembly of amorphous biophotonic nanostructures by phase separation," Soft Matter, vol. 5, no. 9, pp. 1792-1795, 2009.
[17] H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, and E. Yablonovitch, "Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw," Proceedings of the National Academy of Sciences, vol. 109, no. 27, pp. 10798-10801, 2012.
[18] S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, "Absence of red structural color in photonic glasses, bird feathers, and certain beetles," Physical Review E, vol. 90, no. 6, p. 062302, 2014.
[19] B. Alder, S. Frankel, and V. Lewinson, "Radial Distribution Function Calculated by the Monte‐Carlo Method for a Hard Sphere Fluid," The Journal of Chemical Physics, vol. 23, no. 3, pp. 417-419, 1955.
[20] W. Jodrey and E. Tory, "Computer simulation of close random packing of equal spheres," Physical review A, vol. 32, no. 4, p. 2347, 1985.
[21] A. R. Kansal, S. Torquato, F. H. Stillinger, ''Diversity of order and densities in jammed hard-particle packings,'' Physical Review E, 66(4), 2002.
[22] M. Xiao, A. B. Stephenson, A. Neophytou, V. Hwang, D. Chakrabarti, V. N. Manoharan, ''Investigating the trade-off between color saturation and angle-independence in photonic glasses,'' Optics Express, 29(14), pp. 21212–21224, 2021.
[23] H. Cong, B. Yu, S. Wang, L. Qi, J. Wang, Y. Ma, ''Preparation of iridescent colloidal crystal coatings with variable structural colors,'' Optics Express, 21(15), p. 17831, 2013.
[24] Y. Takeoka, S. Yoshioka, A. Takano, S. Arai, K. Nueangnoraj, H. Nishihara, M. Teshima, Y. Ohtsuka, T. Seki, ''Production of colored pigments with amorphous arrays of black and white colloidal particles,'' Angewandte Chemie International Edition, 52(28), pp. 7261–7265, 2013.
[25] M. Harun-Ur-Rashid, A. B. Imran, T. Seki, M. Ishii, H. Nakamura, Y. Takeoka, ''Angle-independent structural color in colloidal amorphous arrays,'' ChemPhysChem, 11(3), pp. 579–583, 2010
[26] J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O'Hern, H. Cao, E. R. Dufresne, ''Biomimetic isotropic nanostructures for structural coloration'', Advanced Materials, 22(26–27), pp. 2939–2944, 2010.
[27] M. Kohri, ''Progress in polydopamine-based melanin mimetic materials for structural color generation,'' Science and Technology of Advanced Materials, 21(1), pp. 833–848, 2020.
[28] Y. Huang, Y. Li, Z. Hu, X. Yue, M. T. Proetto, Y. Jones, N. C. Gianneschi, ''Mimicking melanosomes: Polydopamine nanoparticles as artificial Microparasols,'' ACS Central Science, 3(6), pp. 564–569, 2017.
[29] S. Zhang, M. Xiao, Y. Zhang, Y. Li, H. Liu, G. Han, B. Rathi, K. Lyu, L. Wu, ''Mimicking neuromelanin nanoparticles as a selective PB2+ probe,'' Analytica Chimica Acta, 1105, pp. 208–213, 2020.
[30] Y. Zou, Z. Wang, Z. Chen, Q. P. Zhang, Q. Zhang, Y. Tian, S. Ren, Y. Li, ''Synthetic melanin hybrid patchy nanoparticle photocatalysts,'' The Journal of Physical Chemistry C, 123(9), pp. 5345–5352, 2019.
[31] H. S. Kim, M. Kim, M. S. Kang, J. Ahn, Y. E. Sung, W. C. Yoo, ''Bioinspired synthesis of melaninlike nanoparticles for highly N-doped carbons utilized as enhanced CO2 adsorbents and efficient oxygen reduction catalysts,'' ACS Sustainable Chemistry & Engineering, 6(2), pp. 2324–2333, 2017.
[32] X. Bao, J. Zhao, J. Sun, M. Hu, X. Yang, ''Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease,'' ACS Nano, 12(9), pp. 8882–8892, 2018.
[33] A. Kawamura, M. Kohri, G. Morimoto, Y. Nannichi, T. Taniguchi, K. Kishikawa, ''Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors,'' Scientific Reports, 6(1), 2016.
[34] M. Kohri, Y. Nannichi, T. Taniguchi, K. Kishikawa, ''Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules,'' Journal of Materials Chemistry C, 3(4), pp. 720–724, 2014.
[35] J. Gao, Z. Hu, ''Optical properties of n-isopropylacrylamide Microgel spheres in water,'' Langmuir, 18(4), pp. 1360–1367, 2002.
[36] J. T. Edward, ''Molecular volumes and the stokes-einstein equation,'' Journal of Chemical Education, 47(4), p. 261, 1970.
[37] J. R. Levine, J. B. Cohen, Y. W. Chung, P. Georgopoulos, ''Grazing-incidence small-angle X-ray scattering: New tool for studying thin film growth,'' Journal of Applied Crystallography, 22(6), pp. 528–532, 1989.
[38] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966.
[39] Y. Ohno, ''CIE fundamentals for color measurements,'' NIP & Digital Fabrication Conference, 16(1), pp. 540–545, 2000.
[40] M. Vega, E. M. Martin, M. Perez, C. Pecharroman, G. Marcelo, ''Color engineering of silicon nitride surfaces to characterize the Polydopamine refractive index,'' ChemPhysChem, 19(24), pp. 3418–3424, 2018.
[41] 鄭有舜 " X-光小角度散射在軟物質研究上的應用 " 物理雙月刊, vol.廿六卷二期, 2004
[42] A. Guinier, G. Fournet, ''Small-angle scattering of X-Rays,'' John Wiley and Sons, 1955.
[43] A. Tokmakoff, ''1.2: Radial distribution function,'' Chemistry LibreTexts, 2021
[44] M. Magnusson, J. Sigurdsson, S. E. Armansson, M. O. Ulfarsson, H. Deborah, J. R. Sevinsson, ''Creating RGB images from hyperspectral images using a color matching function,'' IEEE International Geoscience and Remote Sensing Symposium, 2020.
[45] D. A. Ferrer, J. Szewczyk, E. Coy, ''Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-Chemical Properties and perspectives,'' Catalysis Today, 397–399, pp. 316–349, 2022.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *