帳號:guest(18.223.170.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡慧超
作者(外文):Cai,Hui-Chao
論文名稱(中文):以二硫化鎢為通道的雙閘極離子感測電晶體微量量測之研究
論文名稱(外文):Research of Micro-Measurement of Double-Gate Ion-Sensitive Field-Effect Transistor with WS2 as the Channel
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):李奎毅
岑尚仁
口試委員(外文):Lee, Kuei-Yi
Chen, Sun-Zen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:109066550
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:78
中文關鍵詞:雙閘極微量量測離子感測電晶體微型參考電極二硫化鎢
外文關鍵詞:Double-gateMicro-measurementISFETTiny reference electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:518
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
過渡金屬二硫族化物 (Transition-metal dichalcogenides,TMDCs) 其結構為二維層狀之材料,具有多樣的電性,如絕緣體、半導體、金屬態。其中 n 型半導體特性的二硫化鎢具有非常高的電流開關比,非常適合做為離子感測電晶體之通道材料,進而可以減少感測器之誤判率。本論文研究以二硫化鎢為通道的雙閘極離子感測電晶體,量測WS2之基礎電性發現其具有約 7個電流開關比,以及其最大電流0.402μA/μm,且利用上下閘極間的電容耦合效應,使感測靈敏度得以大幅提升,其靈敏度突破能斯特(Nernst)極限 59.6 mV/pH,靈敏度值高達 153.1 mV/pH。與上閘極之離子液體接觸的銀-氯化銀之微小參考電極是以電解法自行製造,其電極在不同的pH值緩衝液所呈現的氧化還原電位之趨勢與商用的銀-氯化銀參考電極表現出高度線性,其表示自行電解之銀-氯化銀參考電極有著極高的品質與穩定性,其優點可進行微量量測。透過 Keithley4200機台控制參考電極與pH緩衝液間的距離,排除不必要的實驗變因,不需要將整個元件浸泡至離子緩衝液中。結論而言,以二硫化鎢為通道的離子感測電晶體,具優異的感測特性,可望未來應用在生物感測領域。
Transition-metal dichalcogenides (TMDCs) are two-dimensional layered materials, which have a diversity of electrical properties, such as insulators, semiconductors, and metallic states. Among them,Among them, character- ization of n-type semiconducting tungsten disulfide (WS2) has extremely high on-off ratio, which is suitable for being the channel material of ISFET. It can reduce the misjudgement rate of the sensor. In this paper, we demon- strate a double-gate ion-sensitive FET with WS2 as a channel. Measuring the fundamental electrical properties of WS2, we found out that it has about 7 order on-off ratio, and the maximum on current is 0.402uA/um.Using ca- pacitive coupling between the top and back gate to improve the sensitivity substantially. The sensitivity of our device reaches up to 153.1 mV/pH, which is capable of surpassing the maximum achievable voltage sensitivity for pH sensing of value 59.6 mV/pH. The hand-made Ag/AgCl reference electrode contacted with electrolyte on the top gate is fabricated with the electrochemical method. The hand-made electrode performs high linear- ity on the Shifted Voltage as well as the commercial reference electrode in buffer solution of different pH values, which indicates that the hand-made Ag/AgCl electrode has high quality and stability that is advantageous for micro-measurement. By controlling the pin of Keithley4200, we can mod- ulate the distance between the pH buffer solution and the reference elec- trode to eliminate unnecessary experimental variables. It is not necessary to immerse the entire component in the buffer solution. In conclusion, the ion-sensitive transistor using WS2 as the channel has excellent sensing prop- erties, which is hopefully applied in the field of biosensing in the future.
摘要 i
Abstract ii
致謝 iii
目錄 vi
第1章 序論1
1.1 半導體技術之演進 1
1.2 傳統離子感測電晶體 4
1.3 論文架構 8
第2章 二維材料介紹 9
2.1 二維材料之發展 9
2.2 二硫化鎢之介紹11
2.2.1 晶體結構 11
2.2.2 電學性質 14
第3章 二硫化鎢成長與檢測 17
3.1 二硫化鎢成長 17
3.1.1 化學氣相沈積 17
3.1.2 成長流程與成長參數 19
3.1.3 二硫化鎢之拉曼光譜檢測 23
3.2 二硫化鎢之光致螢光光譜檢測 26
第4章 離子感測電晶體理論與銀-氯化銀參考電極 28
4.1 EIS與MIS結構相關理論介紹 28
4.2 ISFETs相關理論介紹 33
4.2.1 ISFETs與MOSFETs之電流特性 33
4.2.2 氫離子吸附模型 36
4.2.3 雙閘極離子感應電晶體之工作模式 39
4.3 銀-氯化銀參考電極 40
4.3.1 電解法之原理 42
4.3.2 銀-氯化銀參考電極之電位穩定原理 43
第5章 實驗流程與量測結果分析 45
5.1 銀-氯化銀參考電極 45
5.1.1 參考電極之製作流程 45
5.1.2 參考電極之驗證方法 49
5.2 離子感測電晶體 54
5.2.1 元件製作流程 54
5.2.2 量測系統與元件量測方法 63
5.2.3 元件電性量測結果分析 65
第6章 Future works 76
參考文獻 77
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical Review, vol. 74, no. 2, p. 230, 1948.
[2] “60 年前芯往事,第一個萬億美元初創企業的傳奇歷程,” 2021. https://reurl.cc/ ROO2dr.
[3] P.Bergveld,“Developmentofanion-sensitivesolid-statedeviceforneurophysiolog- ical measurements,” IEEE Transactions on biomedical engineering, no. 1, pp. 70–71, 1970.
[4] M. Kaisti, “Detection principles of biological and chemical fet sensors,” Biosensors and Bioelectronics, vol. 98, pp. 437–448, 2017.
[5] D. Rani, V. Pachauri, N. Madaboosi, P. Jolly, X.-T. Vu, P. Estrela, V. Chu, J. P. Conde, and S. Ingebrandt, “Top-down fabricated silicon nanowire arrays for field- effect detection of prostate-specific antigen,” ACS omega, vol. 3, no. 8, pp. 8471– 8482, 2018.
[6] Y.HuandP.Georgiou,“Arobustisfetph-measuringfront-endforchemicalreaction monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 2, pp. 177–185, 2014.
[7] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nature nanotechnology, vol. 9, no. 10, pp. 768–779, 2014.
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science, vol. 306, no. 5696, pp. 666–669, 2004.
[9] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chem- istry of two-dimensional layered transition metal dichalcogenide nanosheets,” Na- ture chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[10] C. Ataca, H. Sahin, and S. Ciraci, “Stable, single-layer mx2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” The Journal of Physical Chem- istry C, vol. 116, no. 16, pp. 8983–8999, 2012.
[11] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Elec- tronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature nanotechnology, vol. 7, no. 11, pp. 699–712, 2012.
[12] H. Yuan, H. Wang, and Y. Cui, “Two-dimensional layered chalcogenides: from ra- tional synthesis to property control via orbital occupation and electron filling,” Ac- counts of chemical research, vol. 48, no. 1, pp. 81–90, 2015.
[13] J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, pp. 193–335, 1969.
[14] A.Kuc,N.Zibouche,andT.Heine,“Influenceofquantumconfinementontheelec- tronic structure of the transition metal sulfide t s 2,” Physical Review B, vol. 83, no. 24, p. 245213, 2011.
[15] L. Tang, J. Tan, H. Nong, B. Liu, and H.-M. Cheng, “Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism,” Accounts of Materials Research, vol. 2, no. 1, pp. 36–47, 2020.
[16] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, et al., “Controlled growth of high-quality monolayer ws2 layers on sapphire and imaging its grain boundary,” ACS nano, vol. 7, no. 10, pp. 8963–8971, 2013.
[17] N.Peimyoo,J.Shang,W.Yang,Y.Wang,C.Cong,andT.Yu,“Thermalconductivity determination of suspended mono-and bilayer ws2 by raman spectroscopy,” Nano Research, vol. 8, no. 4, pp. 1210–1221, 2015.
[18] N.Peimyoo,J.Shang,C.Cong,X.Shen,X.Wu,E.K.Yeow,andT.Yu,“Nonblink- ing, intense two-dimensional light emitter: monolayer ws2 triangles,” ACS nano, vol. 7, no. 12, pp. 10985–10994, 2013.
[19] “金氧半二極體、電晶體及其電性討論,” 2014. https://reurl.cc/mZmeE9.
[20] P. Bergveld, “Thirty years of isfetology: What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 1–20, 2003.
[21] D.Ovchinnikov,A.Allain,Y.-S.Huang,D.Dumcenco,andA.Kis,“Electricaltrans- port properties of single-layer ws2,” ACS nano, vol. 8, no. 8, pp. 8174–8181, 2014.
[22] H.-J.Jang,J.-G.Gu,andW.-J.Cho,“Sensitivityenhancementofamorphousingazno thin film transistor based extended gate field-effect transistors with dual-gate opera- tion,” Sensors and Actuators B: Chemical, vol. 181, pp. 880–884, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *