帳號:guest(18.222.21.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐景暉
作者(外文):Hsu, Ching-Hui
論文名稱(中文):利用爐管燒結形成氧化鋁薄膜製作局部接觸單晶矽太陽能電池之研究
論文名稱(外文):Monocrystalline Silicon PERC Solar Cell with Aluminum Oxide Film Formed by Furnace Oxidation
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):陳昇暉
李明昌
口試委員(外文):Chen, Sheng-Hui
Li, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066549
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:99
中文關鍵詞:太陽能電池氧化鋁薄膜局部接觸
外文關鍵詞:SolarCellsAluminumOxideFilmPERC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:362
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近些年為了提升矽晶太陽能電池的效率,以PERC(Passivated Emitter and Rear Cell)架構的太陽能電池成為主流。製作PERC太陽能電池的製程中,背表面鈍化是必要的步驟。
本實驗利用p型矽基板製作太陽能電池。首先我們在商業藍片(在已經過磷擴散製程的p-n片正面,沉積氮化矽抗反射層之晶片)背面,使用電子束蒸鍍機蒸鍍一層鋁金屬薄膜,並以高溫爐管對其進行氧化,再將樣品放入燒結爐中進行退火,並且使用WCT-120對樣品進行少數載子壽命的測量,找出最佳的製程條件為:鋁薄膜厚度3nm,氧化溫度400℃,時間10分鐘,和退火溫度700℃,時間3分鐘。待氧化鋁鈍化層製備完成後,我們在背面的鈍化層上沉積一層氮化矽薄膜,並進行二次退火,退火條件為溫度400℃時間,時間為10分鐘。
藉由XPS量測可以得到氧化鋁薄膜之元素組成,並以TEM量測氧化鋁之厚度,即可使用C-V量測其負電荷密度。最後使用最佳製程參數製作出PERC太陽能電池,並達到填充因子為75%,轉換效率達到17.13%。
In recent years, to promote the efficiency of solar cells, PERC (Passivated Emitter and Rear Cell) structure solar cells have been widely used. To fabricate a PERC cell, a passivation layer, usually an AlO_x layer, is deposited on the back surface of the solar wafer.
In this experiment, we used p-type silicon substrates to manufacture solar cells. First, we deposited an aluminum film on the back surface of a blue wafer, i.e., a semi-finished solar cell with SiN_x anti-reflection coating (ARC) layer deposited, by an E-beam evaporator. The blue wafer is a textured substrate which is phosphorus diffused and deposited with a SiN_x ARC on its front surface. Then, the as-deposited sample was put into a furnace which is full of oxygen for oxidation. After that, it was annealed in a sintering furnace. In the end, the sample was measured by WCT-120 equipment for us to know its minority carrier lifetime. Through a series of measurements, we then found the best conditions, and they are 3nm aluminum film thickness, an oxidation process lasting for 10 minutes at 400℃, and an annealing lasting for 3 minutes at 700℃. After the completion of the passivation layer, we stacked a SiN_x film on the back surface to protect the passivation layer. And then, we put it into sintering furnace to do the second annealing process. The best annealing temperature and annealing time are 400℃ and 10 minutes, respectively.
By using XPS (X-ray photoelectron spectroscopy) measurement, we then obtained the aluminum oxide film element composition. Also, we used TEM (Transmission electron microscope) to measure the thickness of the aluminum oxide formed. And then, we calculated the negative charge density of the passivation layer. Finally, PERC solar cells were fabricated using the best parameters, and a best conversion efficiency of 17.13% was achieved with a fill factor of 75%, short-circuit current density of 38.71〖mA/cm〗^2 and open-circuit voltage of 0.59V. These PERC cells were then compared with all-back-surface-field cells fabricated at the same time, following a standard cell fabrication process. A substantial improvement in conversion efficiency can be found from the comparison.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章、導論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 太陽能電池發展及分類 1
1.2.2 PERC太陽能電池(Passivated emitter and rear cell) 3
1.2.3 鈍化層之發展及選擇 6
1.2.4 氧化鋁鈍化層之製備 7
1.2.5 鈍化層之負電荷密度與少數載子壽命之影響 8
1.3 研究目的與動機 9
1.4 論文架構 10
第二章、太陽能電池基本原理 11
2.1 太陽能電池基本工作原理 11
2.2 太陽能電池等效電路 12
2.3 太陽能電池之重要參數 14
2.4 背表面場效應(Back Surface Field,BSF) 17
2.5 氧化鋁之場效鈍化 18
2.5 C-V量測原理 18
第三章、研究方法與製程步驟 22
3.1 實驗架構 22
3.2 實驗流程圖 23
3.3 實驗步驟 24
3.3.1 清洗程序(Wafer Clean) 24
3.3.2 表面粗糙化(Texturing) 24
3.3.3 磷擴散(Phosphorous Diffusion) 25
3.3.4 磷玻璃去除(PSG removal) 25
3.3.5 晶邊絕緣(Edge Isolation) 25
3.3.6 蒸鍍鋁(E-gun Al) 26
3.3.7 爐管氧化(Furnace oxidation) 26
3.3.8 退火(Annealing) 26
3.3.9 背面氮化矽層沉積(SiNx deposition) 26
3.3.10 黃光製程(Photo Lithography) 27
3.3.11 網印電極(Screen Printing) 29
3.3.12 共燒結(Co-firing) 29
3.4 儀器介紹 30
第四章、實驗數據分析 39
4.1 爐管氧化金屬鋁形成氧化鋁薄膜之少數載子壽命 39
4.1.1 蒸鍍不同厚度鋁對少數載子壽命的影響 39
4.1.2 不同氧化溫度及氧化時間的影響 41
4.1.3 退火溫度及時間對少數載子之影響 45
4.2 背面保護層氮化矽之研究 48
4.2.1 少數載子壽命之衰減 48
4.2.2 背面氮化矽二次退火之研究 49
4.3 XPS元素組成分析 52
4.4 TEM量測 54
4.5 固定負電荷量測 57
4.6 SEM量測 60
4.7 元件轉換效率量測 62
4.8 Suns-Voc量測 65
4.9量子效率量測 66
第五章、結論及未來展望 68
參考文獻 70
附錄 75

[1] G. Pearson, D. Chapin, and C. Fuller, "Bell labs demonstrates the first practical silicon solar cell," American Physical Society (APS News), vol. 18, no. 4, 1954.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[3] "太陽能電池材料分類." https://sites.google.com/site/nknumig06102/home/zhong-lei
[4] A. Blakers, "Development of the PERC solar cell," IEEE Journal of Photovoltaics, vol. 9, no. 3, pp. 629-635, 2019.
[5] J. Zhao, A. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp. 429-435, 2001.
[6] J. Zhao, A. Wang, X. Dai, M. Green, and S. Wenham, "Improvements in silicon solar cell performance," in The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference-1991, pp. 399-402, 1991.
[7] S. Steckemetz, A. Metz, and R. Hezel, "Thin Cz-silicon solar cells with rear silicon nitride passivation and screen printed contacts." 2002.
[8] T. Dullweber et al., "The PERC+ cell: A 21%-efficient industrial bifacial PERC solar cell," in Proc. 31st Eur. Photovolt. Sol. Energy Conf. Exhib., pp. 341-350, 2015.
[9] M. Flecha. "Bifacial solar cells Wikipedia." https://en.wikipedia.org/wiki/Bifacial_solar_cells
[10] J. Szlufcik, J. Majewski, A. Buczkowski, J. Radojewski, L. Jȩdral, and E. B. Radojewska, "Screen-printed titanium dioxide anti-reflection coating for silicon solar cells," Solar Energy Materials, vol. 18, no. 5, pp. 241-252, 1989.
[11] C.-H. Hsu et al., "Enhanced Si passivation and PERC solar cell efficiency by atomic layer deposited aluminum oxide with two-step post annealing," Nanoscale Research Letters, vol. 14, no. 1, pp. 1-10, 2019.
[12] Y.-C. Huang and R. W. Chuang, "Study on annealing process of aluminum oxide passivation layer for PERC solar cells," Coatings, vol. 11, no. 9, p. 1052, 2021.
[13] P. Saint-Cast et al., "High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide," IEEE Electron Device Letters, vol. 31, no. 7, pp. 695-697, 2010.
[14] F. Ye, N. Yuan, J. Ding, and Z. Feng, "The performance of thin industrial passivated emitter and rear contacts solar cells with homogeneous emitters," Journal of Renewable and Sustainable Energy, vol. 7, no. 1, p. 013122, 2015.
[15] T. Dullweber et al., "Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells," Solar Energy Materials and Solar Cells, vol. 112, pp. 196-201, 2013.
[16] G. Krugel, W. Wolke, F. Wagner, J. Rentsch, and R. Preu, "Sputtered aluminum oxide for rear side passivation of p-type silicon solar cells," Life, vol. 100, p. 200, 2012.
[17] Y.-S. Lin et al., "Effect of post deposition annealing of printed AlO x film on PERC solar cells," 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 0615-0618, 2014.
[18] P.-K. Liu, Y.-L. Cheng, and L. Wang, "Crystalline silicon PERC solar cell with ozonized AlOx passivation layer on the rear side," International Journal of Photoenergy, vol. 2020, 2020.
[19] C.-C. Lin, J.-J. Huang, D.-S. Wuu, and C.-N. Chen, "Surface passivation property of aluminum oxide thin film on silicon substrate by liquid phase deposition," Thin Solid Films, vol. 618, pp. 118-123, 2016.
[20] W. J. Ho, P. C. Lu, and J. J. Liu, "Improving the performance of textured silicon solar cells through the field‐effect passivation of aluminum oxide layers and up‐conversion via multiple coatings with Er/Yb‐doped phosphors," International Journal of Energy Research, vol. 46, no. 1, pp. 278-289, 2022.
[21] C.-H. Hsu et al., "Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing," Surface and Coatings Technology, vol. 358, pp. 968-975, 2019.
[22] A. Desthieux et al., "Detection of stable positive fixed charges in AlOx activated during annealing with in situ modulated PhotoLuminescence," Solar Energy Materials and Solar Cells, vol. 230, p. 111172, 2021.
[23] "International Technology Roadmap for Photovoltaic Results 2017,." 9th ed.
http://www.itrpv.net/
[24] Y. Tao and A. Rohatgi, "High‐efficiency front junction n‐type crystalline silicon solar cells," Nanostructured Solar Cells, 2017.
[25] O. Von Roos, "A simple theory of back surface field (BSF) solar cells," Journal of Applied Physics, vol. 49, no. 6, pp. 3503-3511, 1978.
[26] S. D. McDonald, K. Nogita, and A. K. Dahle, "Eutectic nucleation in Al–Si alloys," Acta Materialia, vol. 52, no. 14, pp. 4273-4280, 2004.
[27] B. Hoex, J. Gielis, M. Van de Sanden, and W. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al 2 O 3," Journal of Applied Physics, vol. 104, no. 11, p. 113703, 2008.
[28] S. Joonwichien, S. Simayi, K. Shirasawa, K. Tanahashi, and H. Takato, "Thermal treatment effects on flat-band voltage shift in atomic-layer-deposited alumina or aluminum oxide/silicon nitride passivation stacks," Energy Procedia, vol. 92, pp. 353-358, 2016.
[29] D. L. Pulfrey, "MIS solar cells: A review," IEEE Transactions on Electron Devices, vol. 25, no. 11, pp. 1308-1317, 1978.
[30] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 394.
[31] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 400.
[32] D. Kray, S. Hopman, A. Spiegel, B. Richerzhagen, and G. P. Willeke, "Study on the edge isolation of industrial silicon solar cells with waterjet-guided laser," Solar Energy Materials and Solar Cells, vol. 91, no. 17, pp. 1638-1644, 2007.
[33] J. Chen, Z. H. J. Tey, Z. R. Du, F. Lin, B. Hoex, and A. G. Aberle, "Investigation of screen-printed rear contacts for aluminum local back surface field silicon wafer solar cells," IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 690-696, 2013.
[34] "台灣半導體研究中心,“Oxford PECVD-電漿輔助化學氣相沈積系統”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
[35] "台灣半導體研究中心,“Spin coater low-k 材料旋塗機”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
[36] "台灣半導體研究中心,“晶粒等級圖案定義對準系統”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
[37] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, 1996: IEEE, pp. 457-460.
[38] "台灣半導體研究中心,“熱場發射掃描式電子顯微鏡(TFSEM)”." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019
[39] "NTHU Y.-C. Hung Lab, “UV/VIS光譜儀 Lambda 35”." http://oplab.ipt.nthu.edu.tw/main/node/32
[40] "台灣半導體研究中心,“X光光電子能譜儀 (XPS)”." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019
[41] "台灣半導體研究中心,"場發射穿透式電子顯微鏡 (TEM)"." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019
[42] "清華大學奈微與材料科學中心設備介紹"太陽能電池入射光子轉換效率量測系統 (Incident photon conversion efficiency)"." https://cnmm.site.nthu.edu.tw/var/file/188/1188/img/251/517292038.pdf
[43] "Forter Tech, “Oriel Sol3A Class AAA Solar Simulators ”." https://www.newport.com/p/94043A
[44] J. Schmidt, B. Veith, and R. Brendel, "Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 3, no. 9, pp. 287-289, 2009.
[45] D. Gupta, K. Vieregge, and K. Srikrishnan, "Copper diffusion in amorphous thin films of 4% phosphorus‐silcate glass and hydrogenated silicon nitride," Applied Physics Letters, vol. 61, no. 18, pp. 2178-2180, 1992.
[46] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 401.
[47] 劉邦凱, "利用臭氧氧化氧化鋁薄膜達到背面鈍化效果之類倒金字塔單晶矽局部接觸太陽能電池之研究," 國立清華大學, 2020.
[48] 勞大耀, "單晶矽 PERC 太陽能電池之背面鈍化堆疊層最佳退火參數之研究," 2020.
[49] 謝家倫, "原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對 PERC 太陽能電池效率影響," 2021.
[50] A. Kaminski et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, no. 1-4, pp. 373-379, 2002.
[51] E. Wang, H. Wang, and H. Yang, "Comparison of the electrical properties of PERC approach applied to monocrystalline and multicrystalline silicon solar cells," International Journal of Photoenergy, vol. 2016, 2016.
[52] Y.-K. Chiou et al., "Highly efficient multi-crystalline solar cells using rear surface passivation technology," Energy Procedia, vol. 55, pp. 757-761, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *