|
[1] G. Pearson, D. Chapin, and C. Fuller, "Bell labs demonstrates the first practical silicon solar cell," American Physical Society (APS News), vol. 18, no. 4, 1954. [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954. [3] "太陽能電池材料分類." https://sites.google.com/site/nknumig06102/home/zhong-lei [4] A. Blakers, "Development of the PERC solar cell," IEEE Journal of Photovoltaics, vol. 9, no. 3, pp. 629-635, 2019. [5] J. Zhao, A. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp. 429-435, 2001. [6] J. Zhao, A. Wang, X. Dai, M. Green, and S. Wenham, "Improvements in silicon solar cell performance," in The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference-1991, pp. 399-402, 1991. [7] S. Steckemetz, A. Metz, and R. Hezel, "Thin Cz-silicon solar cells with rear silicon nitride passivation and screen printed contacts." 2002. [8] T. Dullweber et al., "The PERC+ cell: A 21%-efficient industrial bifacial PERC solar cell," in Proc. 31st Eur. Photovolt. Sol. Energy Conf. Exhib., pp. 341-350, 2015. [9] M. Flecha. "Bifacial solar cells Wikipedia." https://en.wikipedia.org/wiki/Bifacial_solar_cells [10] J. Szlufcik, J. Majewski, A. Buczkowski, J. Radojewski, L. Jȩdral, and E. B. Radojewska, "Screen-printed titanium dioxide anti-reflection coating for silicon solar cells," Solar Energy Materials, vol. 18, no. 5, pp. 241-252, 1989. [11] C.-H. Hsu et al., "Enhanced Si passivation and PERC solar cell efficiency by atomic layer deposited aluminum oxide with two-step post annealing," Nanoscale Research Letters, vol. 14, no. 1, pp. 1-10, 2019. [12] Y.-C. Huang and R. W. Chuang, "Study on annealing process of aluminum oxide passivation layer for PERC solar cells," Coatings, vol. 11, no. 9, p. 1052, 2021. [13] P. Saint-Cast et al., "High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide," IEEE Electron Device Letters, vol. 31, no. 7, pp. 695-697, 2010. [14] F. Ye, N. Yuan, J. Ding, and Z. Feng, "The performance of thin industrial passivated emitter and rear contacts solar cells with homogeneous emitters," Journal of Renewable and Sustainable Energy, vol. 7, no. 1, p. 013122, 2015. [15] T. Dullweber et al., "Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells," Solar Energy Materials and Solar Cells, vol. 112, pp. 196-201, 2013. [16] G. Krugel, W. Wolke, F. Wagner, J. Rentsch, and R. Preu, "Sputtered aluminum oxide for rear side passivation of p-type silicon solar cells," Life, vol. 100, p. 200, 2012. [17] Y.-S. Lin et al., "Effect of post deposition annealing of printed AlO x film on PERC solar cells," 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 0615-0618, 2014. [18] P.-K. Liu, Y.-L. Cheng, and L. Wang, "Crystalline silicon PERC solar cell with ozonized AlOx passivation layer on the rear side," International Journal of Photoenergy, vol. 2020, 2020. [19] C.-C. Lin, J.-J. Huang, D.-S. Wuu, and C.-N. Chen, "Surface passivation property of aluminum oxide thin film on silicon substrate by liquid phase deposition," Thin Solid Films, vol. 618, pp. 118-123, 2016. [20] W. J. Ho, P. C. Lu, and J. J. Liu, "Improving the performance of textured silicon solar cells through the field‐effect passivation of aluminum oxide layers and up‐conversion via multiple coatings with Er/Yb‐doped phosphors," International Journal of Energy Research, vol. 46, no. 1, pp. 278-289, 2022. [21] C.-H. Hsu et al., "Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing," Surface and Coatings Technology, vol. 358, pp. 968-975, 2019. [22] A. Desthieux et al., "Detection of stable positive fixed charges in AlOx activated during annealing with in situ modulated PhotoLuminescence," Solar Energy Materials and Solar Cells, vol. 230, p. 111172, 2021. [23] "International Technology Roadmap for Photovoltaic Results 2017,." 9th ed. http://www.itrpv.net/ [24] Y. Tao and A. Rohatgi, "High‐efficiency front junction n‐type crystalline silicon solar cells," Nanostructured Solar Cells, 2017. [25] O. Von Roos, "A simple theory of back surface field (BSF) solar cells," Journal of Applied Physics, vol. 49, no. 6, pp. 3503-3511, 1978. [26] S. D. McDonald, K. Nogita, and A. K. Dahle, "Eutectic nucleation in Al–Si alloys," Acta Materialia, vol. 52, no. 14, pp. 4273-4280, 2004. [27] B. Hoex, J. Gielis, M. Van de Sanden, and W. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al 2 O 3," Journal of Applied Physics, vol. 104, no. 11, p. 113703, 2008. [28] S. Joonwichien, S. Simayi, K. Shirasawa, K. Tanahashi, and H. Takato, "Thermal treatment effects on flat-band voltage shift in atomic-layer-deposited alumina or aluminum oxide/silicon nitride passivation stacks," Energy Procedia, vol. 92, pp. 353-358, 2016. [29] D. L. Pulfrey, "MIS solar cells: A review," IEEE Transactions on Electron Devices, vol. 25, no. 11, pp. 1308-1317, 1978. [30] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 394. [31] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 400. [32] D. Kray, S. Hopman, A. Spiegel, B. Richerzhagen, and G. P. Willeke, "Study on the edge isolation of industrial silicon solar cells with waterjet-guided laser," Solar Energy Materials and Solar Cells, vol. 91, no. 17, pp. 1638-1644, 2007. [33] J. Chen, Z. H. J. Tey, Z. R. Du, F. Lin, B. Hoex, and A. G. Aberle, "Investigation of screen-printed rear contacts for aluminum local back surface field silicon wafer solar cells," IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 690-696, 2013. [34] "台灣半導體研究中心,“Oxford PECVD-電漿輔助化學氣相沈積系統”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp [35] "台灣半導體研究中心,“Spin coater low-k 材料旋塗機”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp [36] "台灣半導體研究中心,“晶粒等級圖案定義對準系統”." https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp [37] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, 1996: IEEE, pp. 457-460. [38] "台灣半導體研究中心,“熱場發射掃描式電子顯微鏡(TFSEM)”." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019 [39] "NTHU Y.-C. Hung Lab, “UV/VIS光譜儀 Lambda 35”." http://oplab.ipt.nthu.edu.tw/main/node/32 [40] "台灣半導體研究中心,“X光光電子能譜儀 (XPS)”." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019 [41] "台灣半導體研究中心,"場發射穿透式電子顯微鏡 (TEM)"." https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019 [42] "清華大學奈微與材料科學中心設備介紹"太陽能電池入射光子轉換效率量測系統 (Incident photon conversion efficiency)"." https://cnmm.site.nthu.edu.tw/var/file/188/1188/img/251/517292038.pdf [43] "Forter Tech, “Oriel Sol3A Class AAA Solar Simulators ”." https://www.newport.com/p/94043A [44] J. Schmidt, B. Veith, and R. Brendel, "Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 3, no. 9, pp. 287-289, 2009. [45] D. Gupta, K. Vieregge, and K. Srikrishnan, "Copper diffusion in amorphous thin films of 4% phosphorus‐silcate glass and hydrogenated silicon nitride," Applied Physics Letters, vol. 61, no. 18, pp. 2178-2180, 1992. [46] D. A. Neamen, Semiconductor Physics and Devices, 4th ed. p. 401. [47] 劉邦凱, "利用臭氧氧化氧化鋁薄膜達到背面鈍化效果之類倒金字塔單晶矽局部接觸太陽能電池之研究," 國立清華大學, 2020. [48] 勞大耀, "單晶矽 PERC 太陽能電池之背面鈍化堆疊層最佳退火參數之研究," 2020. [49] 謝家倫, "原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對 PERC 太陽能電池效率影響," 2021. [50] A. Kaminski et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, no. 1-4, pp. 373-379, 2002. [51] E. Wang, H. Wang, and H. Yang, "Comparison of the electrical properties of PERC approach applied to monocrystalline and multicrystalline silicon solar cells," International Journal of Photoenergy, vol. 2016, 2016. [52] Y.-K. Chiou et al., "Highly efficient multi-crystalline solar cells using rear surface passivation technology," Energy Procedia, vol. 55, pp. 757-761, 2014.
|