帳號:guest(3.138.172.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝亮賢
作者(外文):Xie, Liang-Xian
論文名稱(中文):聚焦與壓縮系統產生高能量綠光短脈衝
論文名稱(外文):The focusing and compression system generates short pulses of high energy green light
指導教授(中文):陳明彰
指導教授(外文):Chen, Ming-Chang
口試委員(中文):林明緯
賈世璿
口試委員(外文):Lin, Ming-Wei
Chia, Shih-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066533
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:85
中文關鍵詞:高能量短脈衝可見光脈衝非線性脈衝壓縮串聯聚焦展頻與壓縮
外文關鍵詞:High energy short pulseVisible light pulseNonlinear pulse compressionCascaded focusing and compression
相關次數:
  • 推薦推薦:0
  • 點閱點閱:304
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,摻鈦藍寶石雷射(Ti:sapphire laser)和摻鐿鎢酸釓鉀晶體脈衝放大器(YB:KGW laser)快速發展,兩者差異為平均功率、重複率以及脈衝時寬。摻鈦藍寶石雷射擁有較寬的增益頻寬,可以提供較短時寬的脈衝,但是其平均功率與重複率可控制的範圍有限;而摻鐿鎢酸釓鉀晶體脈衝放大器,因其晶體的特性,可以使得電子在高能階時,存活時間較長,以及激發電子至高能階為連續波雷射(半導體泵浦固體雷射),能夠持續激發電子至高能階,故其擁有更高的平均功率,同時也擁有較高自由度的重複率調變,但是其缺點為晶體增益頻寬窄,無法提供較短時寬的脈衝。基於上述兩點比較,若將摻鐿鎢酸釓鉀晶體脈衝放大器窄頻寬的問題解決,可以同時得到兩台雷射本身的優勢,所以,以頻譜擴展的方式能夠有效的將時間脈衝壓縮。
本論文探討的內容為使用摻鐿鎢酸釓鉀晶體脈衝放大器經過倍頻晶體後產生的可見光,將此光源利用二次頻譜擴展的方式從 123.9 飛秒壓縮到 12.7 飛秒,將峰值功率從 4.6 十億瓦提升至 22.2 十億瓦以及觀察下一級轉換極限脈衝寬為 6 飛秒的結果,同時量測每一次頻譜擴展後的頻譜、雷射光束品質(M2)、空間頻譜均勻性、時間上的脈衝形狀以及長期穩定性。
In recent years, Ti: sapphire laser and YB: KGW laser have developed rapidly. The difference between the two lasers is the average power, the repetition rate, and the pulse duration. Ti: sapphire laser has a wide gain bandwidth and can provide short pulse duration. However, the range of controllable average power and repetition rate is limited. The YB: KGW laser, because of the characteristics of the crystal, can make the electrons longer lifetimes at high energy levels. And the continuous wave laser (semiconductor-pumped solid-state laser) can continuously excite electrons to high energy levels, so it has a higher average power. It also has a higher degree of controllable repetition rate modulation, but its disadvantage is that the crystal gain has a narrow bandwidth and cannot provide a short pulse duration. Based on the comparison of the above two points, if the problem of the narrow bandwidth of the YB: KGW laser is solved, the advantages of the two lasers can be obtained at the same time. Therefore, the pulse can be effectively compressed by spectral broadening.
The content discussed in this thesis is the use of the visible light generated by the YB: KGW laser after passing through the frequency-doubling crystal. Compressing this light source from 123.9 femtoseconds to 12.7 femtoseconds using twice spectral broadening, and increases peak power from 4.6 gigawatts to 22.2 gigawatts, and observe the result that the next-level transform-limited pulse duration is 6 femtoseconds, and measure the spectrum, laser beam quality (M2), spatial-spectral homogeneity, pulse shape in time-domain and long-term stability after each spectral broadening.
摘要-----------------------------------------------I
Abstract------------------------------------------II
致謝----------------------------------------------III
圖表目錄-------------------------------------------VI
第一章 原理-------------------------------------1
1.1 實驗動機---------------------------------------3
1.2 展頻原理與自聚焦--------------------------------4
1.3 串聯聚焦展頻與壓縮方法---------------------------8
第二章 實驗架構與量測架構------------------------10
2.1 串聯聚焦展頻與壓縮實驗架構-----------------------12
2.2 偏振選通頻域分辨光學開關量測架構-----------------16
2.3 利用擾動的穿隧游離觀測時域電場量測架構------------19
2.4 雷射光束品質量測架構與空間頻譜均勻性量測----------22
第三章 實驗結果---------------------------------25
3.1 驅動雷射量測實驗結果----------------------------25
3.2 第一級串聯聚焦展頻與壓縮量測實驗結果--------------30
3.3 第二級串聯聚焦展頻與壓縮量測實驗結果--------------36
3.4 第三級串聯聚焦展頻量測實驗結果-------------------42
第四章 結論與未來展望---------------------------50
參考文獻-------------------------------------------52
附錄A 訂製啁啾鏡群延遲曲線--------------------------54
附錄B 真空窗戶損壞閥值------------------------------57
附錄C 偏振選通頻域分辨光學開關操作步驟---------------59
附錄D 利用擾動的穿隧游離觀測時域電場量測操作步驟------67
附錄E 第一級與第二級串聯聚焦展頻與壓縮氣壓選定方式----76
附錄F TIPTOE量測模擬 MATLAB CODE-------------------79

1. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24, 34–36 (OSA, 1999).
2. Y.-Y. Liu, K. Zhao, P. He, H.-D. Huang, H. Teng, and Z.-Y. Wei, “High-Efficiency Generation of 0.12 mJ, 8.6 Fs Pulses at 400nm Based on Spectral Broadening in Solid Thin Plates,” Chinese Physics Letters 34, 074204 (IOP Publishing, 2017).
3. F. Hu, Q. Zhang, J. Cao, Z. Hong, W. Cao, and P. Lu, “Generation of 5.2 fs, energy scalable blue pulses,” Opt. Lett. 47, 389–392 (2022).
4. H.-T. Chang, M. Zürch, P. M. Kraus, L. J. Borja, D. M. Neumark, and S. R. Leone, “Simultaneous generation of sub-5-femtosecond 400 nm and 800 nm pulses for attosecond extreme ultraviolet pump–probe spectroscopy,” Opt. Lett. 41, 5365–5368 (2016).
5. I. Procino, R. Velotta, C. Altucci, S. Amoruso, R. Bruzzese, X. Wang, V. Tosa, G. Sansone, C. Vozzi, et al., “Hollow-fiber compression of visible, 200 fs laser pulses to 40 fs pulse duration,” Opt. Lett. 32, 1866–1868 (2007).
6. D. Descamps, F. Guichard, S. Petit, S. Beauvarlet, A. Comby, L. Lavenu, and Y. Zaouter, “High-power sub-15 fs nonlinear pulse compression at 515 nm of an ultrafast Yb-doped fiber amplifier,” Opt. Lett. 46, 1804–1807 (2021).
7. V. Hariton, A. Bin Wahid, G. Figueira, K. Fritsch, and O. Pronin, “Multipass spectral broadening and compression in the green spectral range,” Opt. Lett. 47, 1246–1249 (2022).
8. Shiner AD, Trallero-Herrero C, Kajumba N, Bandulet H-C, Comtois D, Légaré F, et al. “Wavelength scaling of high harmonic generation efficiency.” Phys Rev Lett. 2009;103(7):073902.
9. K. W. DeLong, Rick Trebino, and Daniel J. Kane “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries” Opt. Soc. Am. B Vol. 11, Issue 9, pp. 1595-1608 (1994)
10. S. B. Park, K. Kim, W. Cho, S. I. Hwang, I. Ivanov, C. H. Nam, K.T. Kim“Direct sampling of a light wave in air” Optica 5, 402-408 (2018).
11. Fan Xiao, Xiaohui Fan, Li Wang, Dongwen Zhang, Jianhua Wu, Xiaowei Wang, Zengxiu Zhao“Generation of Intense Sub-10 fs Pulses at 385nm” CHIN. PHYS. LETT 37, 114202 (2020).
12. Jun Liu, Kotaro Okamura, Yuichiro Kida, Takahiro Teramoto, Takayoshi Kobayashi “Clean sub-8-fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy” OPTICS EXPRESS 18, 20645-20650 (2010)
13. Jun Liu, Yuichiro Kida, Takahiro Teramoto, Takayoshi Kobayashi “Generation of stable sub-10 fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment” OPTICS EXPRESS 18, 4664-4672 (2010)
14. Chih-Hsuan Lu, Tobias Witting, Anton Husakou, Marc J.J. Vrakking, A. H. Kung, Federico J. Furch “Sub-4fs laser pulses at high average power and high repetition rate from an all-solid-state setup” OPTICS EXPRESS 26, 8941-8956 (2018)
15. Martin Kaumanns, Vladimir Pervak, Dmitrii Kormin, Vyacheslav Leshchenko, Alexander Kessel, Moritz Ueffing, Yu Chen, Thomas Nubbemeyer “Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs” Opt. Lett. 43, 5877–5880 (2018).
16. John C. Travers , Teodora F. Grigorova , Christian Brahms , Federico Belli “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres” Nat. Photonics, 13, 547–554 (2019)
17. P. Dombi, V. S. Yakovlev, K. O'Keeffe, T. Fuji, M. Lezius, G. Tempea, “Pulse compression with time-domain optimized chirped mirrors” Opt. Express,13(26), 10888-10894 (2005).
18. Robert Klas, Alexander Kirsche, Martin Gebhardt, Joachim Buldt, Henning Stark, Steffen Hädrich, Jan Rothhardt, Jens Limpert “Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source” PhotoniX (2021) 2:4
19. PHYS 630: Advanced Optics (Fall 2008) http://nicadd.niu.edu/~piot/phys_630/Materials.html
20. S. B. Park, K. Kim, W. Cho, S. I. Hwang, I. Ivanov, C. H. Nam, K.T. Kim“Direct sampling of a light wave in air: supplementary material” Optica supplementary material
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *