帳號:guest(3.149.245.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張伊芃
作者(外文):Chang, I-Peng
論文名稱(中文):熱退火對電漿輔助化學氣相沉積法鍍製之高含氧量氮氧化矽薄膜其光學特性與機械特性影響之探討
論文名稱(外文):Annealing effect on optical and mechanical properties of the silica-like Silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):王子敬
井上優貴
口試委員(外文):Wang, Tsz-King
Yuki, lnoue
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066532
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:重力波薄膜化學沉積氮氧化矽退火機械損耗
外文關鍵詞:LIGOoxynitrideopticalmechanicalAnnealingsilica-like
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雷射干涉重力波觀測站(Laser Interferometer Gravitational-Wave Observatory, LIGO)利用大型麥克森干涉儀應用於重力波的偵測。由於重力波訊號非常微弱又容易受到各種雜訊影響,因此必須降雜訊以提升重力波偵測系統的靈敏度。本實驗室主要的研究方向為優化重力波干涉儀中高反射鏡上的薄膜材料,在各式雜訊中反射鏡薄膜材料的熱擾動雜訊為影響系統的雜訊來源之一,根據fluctuation-dissipation theorem得知此雜訊與薄膜材料的機械損耗成正比,且作為光學應用之高反射鏡也需擁有優秀的光學性質,因此本實驗室致力於研究低機械損耗與優秀光學特性之薄膜材料。
先前本實驗室在高折射率方面的薄膜材料研究為使用PECVD鍍製出低機械損耗的氮化矽薄膜SiN0.33H0.58與使用LPCVD鍍製出低光學吸收的氮化矽薄膜SiN0.91H0.02,而在低折射率則利用PECVD鍍製氮氧化矽薄膜並透過改變反應氣體N2O與SiH4的流量比來調整薄膜之特性,依照薄膜的元素組成分可分為高含氧量(silica-like)與高含氮量(nitride-like),在高含氧量薄膜的部分雖擁有比較低的光學吸收但不足以達到LIGO的標準,且機械損耗較高,因此本研究針對此薄膜進行優化,希望能將光學吸收與機械損耗同時再降低。而高含氮量薄膜的機械損耗低但光學吸收則較高,有關此薄膜之優化請參考洪阡譯之論文。在本實驗室過往的研究中發現退火可降低光學吸收與機械損耗,因此本研究利用退火的方式來使薄膜優化。
研究結果顯示,在900度6小時的純氮退火後有最佳的薄膜參數,在經過高溫退火後影響光學吸收的主因N-H鍵大量斷鍵使得吸收下降,在1064nm之光學吸收從1.43×10^(-6)降至3.3×10^(-7);1550nm之光學吸收從5.8×10^(-6)降至5.8×10^(-7);1950nm之光學吸收則從1.5×10^(-5)降至2.6×10^(-6),此數據為本實驗室首次有光學吸收降低至10^(-7),為本實驗室研究的一大進步。而在機械損耗方面在退火後有也顯著的降低且比LIGO目前所使用的低折射率氧化矽薄膜相比更為下降。
至此本實驗在優化光學與機械特性的這一目標取得了非常好的結果,但使用高溫退火使得材料性質產生一缺點,即為退火減少N-H鍵使得薄膜有5~6%的減薄情形,此結果非常不利於薄膜在高反射鏡上之應用,因此期望未來能使用其他的沉積方法來讓薄膜有更好的表現。
The Laser Interferometer Gravitational-Wave Observatory (LIGO) uses the large Michelson interferometer for gravitational wave detection. Since the gravitational wave signal is feeble and easily affected by various kinds of noise, it is necessary to reduce the noise to improve the sensitivity of the gravitational wave detection system. The main research direction of this laboratory is to optimize the thin-film material on the high-refractive mirror in the gravitational wave interferometer, among all kinds of noises, the coating Brownian noise of the mirror film material is one of the noise sources affecting the system. According to the fluctuation-dissipation theorem, this noise is proportional to the mechanical loss of the thin film material, and as a high-refractive mirror for optical applications having excellent optical properties is also important. Therefore, our laboratory has been dedicated to developing thin-film materials with low mechanical loss and outstanding optical properties.
In previous research on high refractive index material in our laboratory, we used PECVD to deposition silicon nitride film,SiN033H0.58, which had a low mechanical loss and use LPCVD to deposition silicon nitride film,SiN0.91H0.02, which had a lower optical absorption. On the other hand,for the low-index material’s research we used PECVD to deposition silicon oxynitride films, and the characteristics of the films are adjusted by changing the flow ratio of the reactive gases N2O and SiH4. According to the elemental composition of the film, it can be divided into high oxygen content (silica-like) and high nitrogen content (nitride-like). Although the part of the silica-like silicon oxynitride film has a relatively low optical absorption, it is not enough to meet the standard of LIGO, and the mechanical loss of the film is relatively high. Therefore, this study is optimized for this film, hoping to reduce the optical absorption and mechanical loss at the same time. On the other hand, the nitride-like silicon oxynitride film had low mechanical loss but high optical absorption. For the optimization of this film, please refer to the thesis by Qian-Yi Hong. In previous studies in our laboratory, it was found that annealing can reduce optical absorption and mechanical loss, so this research attempted to use annealing to optimize the film.
The results show that the optimum film parameters are obtained after pure nitrogen annealing at 900°C for 6 hours, after high temperature annealing, N-H bonds that affect optical absorption was broken, resulting in a decrease in absorption. The optical absorption at 1064nm decreases from 1.43×10^(-6) to 3.3×10^(-7); the optical absorption at 1550nm decreases from 5.8×10^(-6) to 5.8×10^(-7); the optical absorption at 1950nm decreased from 1.5×10^(-5) to 2.6×10^(-6), this data is the first time that the optical absorption of the laboratory has been reduced to 10^(-7), which is a major advance in the research in this laboratory. In terms of mechanical loss, there is a significant reduction after annealing and is even lower than low-refractive-index SiO2 thin-film currently used in LIGO.
So far, this experiment has achieved superb results with the goal of optimizing optical and mechanical properties. However, the use of high temperature annealing leads to a disadvantage of material properties, that is the thin film thinning by 5~6% due to annealing because the concentration of N-H bonds is reduced during annealing. This result is unfavorable for the application of the film to high-refractive mirrors, so it is expected that other methods of deposition can make the film more perfect in the future.
目錄
Abstract i
摘要 iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章、導論 1
1-1 前言 1
1-2 研究動機 4
第二章、純氮退火後高含氧量氮氧化矽薄膜材料特性分析 7
2-1 氮氧化矽薄膜製程 7
2-2 純氮退火之製程與使用動機 8
2-3 不同溫度下退火後薄膜材料特性分析 10
2-3.1 氫相關之鍵結與懸鍵分析 10
2-3.2 折射係數與能隙分析 14
2-3.3 厚度分析 15
2-4 不同時間下退火後薄膜材料特性分析 17
2-4.1氫相關之鍵結與懸鍵分析 18
2-4.2 折射係數與能隙分析 21
2-4.3 厚度分析 22
2-5 最佳退火參數薄膜材料特性分析 22
2-5.1 結晶分析 23
2-5.2 元素組成與鍵結密度分析 26
第三章、純氮退火後高含氧量氮氧化矽薄膜光學吸收分析 32
3-1 光學吸收之原理與架構 32
3-2 薄膜材料鍵結對光學吸收影響之理論 35
3-3退火後薄膜材料之光學吸收 42
第四章、純氮退火後高含氧量氮氧化矽薄膜機械特性分析 46
4-1 機械損耗系統之原理與架構 46
4-1.1 單晶矽懸臂製程 46
4-1.2 量測機械損耗之基本原理與系統架構 49
4-2 最佳退火參數薄膜之楊氏模數與應力分析 53
4-3 最佳退火參數薄膜低溫機械損耗分析 55
第五章、總結與未來展望 61
5-1 總結 61
5-2 未來展望 62
參考文獻 63

[1] A. Einstein, Die grundlage der allgemeinen relativitatstheorie, Annalen der Physik 49, 769 (1916).
[2] R. A. Hulse, J. H. Taylor, Discovery of a pulsar in a binary system, The Astrophysical Journal 195, L51 (1975).
[3] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016).
[4] R. X. Adhikari, et al., A cryogenic silicon interferometer for gravitational-wave detection, Classical Quantum Gravity 37, 165003 (2020).
[5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
[6] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
[7] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
[8] M. Abernathy, F. Acernese and P. Ajith, Einstein gravitational-wave Telescope conceptual design study: ET-0106C-10 (2011).
[9] K. Somiya, Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector, Class. Quantum Grav. 29, 124007 (2012).
[10] I. W. Martin et al., Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2, Class. Quantum Grav. 26, 155012 (2009).
[11] R. Robie, Characterisation of the mechanical properties of thin-film mirror coating materials for use in future interferometric gravitational wave detectors, Diss. University of Glasgow, (2018).
[12] G2200700-LIGO paper
[13] H. W. Pan, Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors, PhD Thesis, National Tsing Hua University (2018).
[14] Z. L. Huang, The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films, Master thesis, National Tsing Hua University (2019).
[15] L. C. Kuo, Study on nano-layers of titania and silica deposited by ion beam sputtering for mirror coatings of laser interferometer gravitational wave detector, PhD thesis, National Tsing Hua University (2019).
[16] W. J. Tsai, Study of the optical and mechanical properties of silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition, Master thesis, National Tsing Hua University (2019).
[17] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
[18] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
[19] H. C. Chen, Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever, Master thesis, National Tsing Hua University (2017)
[20] L. A. Chang, Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition, Master thesis, National Tsing Hua University (2018)
[21] M. Hussein, K. Wörhoff, G. Sengo, and A. Driessen, “Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications,” Thin Solid Films. 515, 3779–3786 (2007).
[22] J. Rostaing, Y. Cros, S. Gujrathi, and S. Poulain, “Quantitative infrared characterization of plasma enhanced CVD silicon oxynitride films,” Journal of Non-Crystalline Solids. 97-98, 1051–1054 (1987).
[23] K. Petersen, “Dynamic micromechanics on silicon: Techniques and devices,” IEEE Transactions on Electron Devices. 25, 1241–1250 (1978).
[24] T. R. Lenka and A. K. Panda, “AlGaN/GaN-based HEMT on SiC substrate for microwave characteristics using different passivation layers,” Pramana. 79, 151–163 (2012).
[25] J. Rostaing, Y. Cros, S. Gujrathi, and S. Poulain, “Quantitative infrared characterization of plasma enhanced CVD silicon oxynitride films,” Journal of Non-Crystalline Solids. 97-98, 1051–1054 (1987).
[26] Z. Yin and F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Physical Review B. 42, 3658–3665 (1990).
[27] A. D. Prado, E. S. Andrés, I. Mártil, G. González-Diaz, D. Bravo, F. J. López, W. Bohne, J. Röhrich, B. Selle, and F. L. Martínez, “Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition,” Journal of Applied Physics. 93, 8930–8938 (2003).
[28] A. Sassella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Physical Review B. 48, 14208–14215 (1993).
[29] T. Makino and M. Maeda, “Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture,” Japanese Journal of Applied Physics, vol. 25, 1300–1306 (1986).
[30] D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, “Electron-spin-resonance study of defects in plasma-enhanced chemical vapor deposited silicon nitride”, Appl. Phys. Lett. 52, 445 (1988).
[31] Y.H. Kao, Study the reduction of optical absorption of the oxynitride thin film fabricated by plasma enhanced chemical vapor deposition, Master thesis, National Tsing Hua University (2021).
[32] N. C. Kang, Photothermal common path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis, National Tsing Hua University (2017).
[33] D. L. Tsai, Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition for mirror coating of laser interferometer gravitational waves detector, Master thesis, National Tsing Hua University (2021).
[34] F. C. Kuei, Study of silicon nitride and silicon oxynitride films fabricated by the plasma enhanced chemical vapor deposition method to derive empirical equation of optical absorption, Master thesis, National Tsing Hua University (2021)
[35] Q.Y. Hong, Master thesis, National Tsing Hua University (2022)
[36] Yukun,Gao. Penggang,Yin. Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals, SCIENTIFIC REPORTS (2017)
[37] F. Ay and A. Aydinli, Comparative investigation of hydrogen bonding in silicon-based PECVD grown dielectrics for optical waveguides, Optical materials, 26, 1 (2004).
[38] Z. Yin and F. W. Smith, Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis, Phys. Rev. B 42, 6 (1990)
[39] L, Qing, et al., Vertertical integration of silicon nitride on the silicon-on-insulator platform. The 9th International Conference on Group IV Photonics (GFP). IEEE, 2012.
[40] J. H. Fu and J. R. Schlup, Mid- and Near-Infrared Spectroscopic Investigations of Reactions between Phenyl Glycidyl Ether (PGE) and Aromatic Amines, Journal of applied polymer science 49, 2 (1993).
[41] K. B. Whetsel, W. E. Roberson and M. W. KRELL, Near-Infrared Spectra of Primary Aromatic Amines, Analytical Chemistry 30, 10 (1958).
[42] M. H. Srodsky, Manuel Cardona, and J.J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,(1977).
[43] Y. J. Chabal and C. K. N. Patel, Infrared Absorption in a-Si:H: First Observation of Gaseous Molecular H2 and Si-H Overtone, PHYSICAL REVIEW LETTERS,(1984).
[44] Touir, H., Zellama, K., & Morhange, J.-F. Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities. Physical Review B, 59 (15) (1999).
[45] F. Giorgis, F. Giuliana, C.F. Pirri, E. Tresso, C. Summonte, R. Rizzoli, F. Galloni, A. Desalvo, P. Rava, Optical, structural and electrical properties of device-quality hydrogenated amorphous silicon–nitrogen films deposited by plasma-enhanced chemical vapour deposition, Philosophical Magazine B 77 (4) (1998).
[46] Yan Fu , Jili Li and Chuanbao Cao, The superelastic mechanism of Si3N4 microsprings using micro-Raman spectroscopy, Phys. Chem. Chem. Phys (2014).
[47] W. Y. Wang, Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University (2013)
[48] C. W. Lee, Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application , Master thesis, National Tsing Hua University (2013).
[49] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 5: 109-121 (2003).
[50] T. Makino and M. Maeda, Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture, Jpn. J. Appl. Phys. 25, 1300 (1986).
[51] T. Makino, Journal of the Electrochemistry Society 130 450-5 (1983)
[52] H. Shanks, et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon.Phys. Stauts Solidi B 100, 43 (1980)
[53] Master thesis, National Tsing Hua University (2020)
[54] J. S. Oul, Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers, Master thesis, National Tsing Hua University (2012).
[55] G. Gerald Stoney “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 82, 172–175 (1909).
[56] Sometani, Mitsuru, et al. "Improvement of dielectric properties on deposited SiO2 caused by stress relaxation with thermal annealing." Japanese Journal of Applied Physics 48.5S1 (2009): 05DB03.
[57] H. Wu, Cryogenic mechanical loss of SiNxHy and SiN0.40H0.79/SiO2 stacks deposited by plasma enhanced chemical vapor deposition method, Master thesis, National Tsing Hua University (2017).
[58] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society 38, 125–131 (1955).
[59] A. N. Trukhin, “Investigation of the photoelectric and photoluminescent properties of crystalline quartz and vitreous silica in the fundamental absorption region. A model for electronic structure and migration of energy in SiO2,” Physica Status Solidi (b). 86, 67–75 (1978).
[60] R. Robie, Characterisation of the mechanical properties of thin-film mirror coating materials for use in future interferometric gravitational wave detectors, Ph D. thesis University of Glasgow, (2018).
[61] T. L. Lo, Master thesis, National Tsing Hua University (2022)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以電漿輔助化學氣相沉積法鍍製之低氮氮化矽薄膜經熱退火後光學特性及室溫機械損耗之研究
2. 以電漿輔助化學氣相沈積法於矽懸臂沈積之氮化矽薄膜應力對機械損耗之影響暨機械損耗量測系統改善
3. 以電漿輔助化學氣相沉積法沉積氮化矽薄膜及其與二氧化矽之堆疊膜之低溫機械損耗
4. 使用 LPCVD 方法沉積 SiN 在矽懸臂基板量測其機械損耗,並開發用於量測機械損耗的 GNS
5. 砷化鎵上穿膜離子佈植的研究
6. Ta金屬矽化物在GaAs上的穿膜離子佈植
7. Ti變量對TixFeCoNi合金氧化物薄膜的微結構、電阻及磁性的影響
8. 以電漿輔助化學氣相沉積法鍍製之氮化矽薄膜其熱退火後光學特性以及無氨氣製程其光學及機械特性之探討
9. 以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討
10. 利用電漿輔助化學氣相沉積法鍍製四分之一光學厚度氮氧化矽與氮化矽堆疊膜應用於雷射干涉重力波偵測器反射鏡之研究
11. 以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響
12. 利用離子束濺鍍法鍍製奈米多層膜其低溫機械損耗抑制效應與退火效應之研究
13. 鍺離子佈植SiO2薄膜之非線性通道波導之研究
14. 在五氧化二鉭與二氧化矽混合膜平面波導上施以熱極化之研究
15. 週期結構應用於發光二極體以提升光汲取效率之研究
 
* *