帳號:guest(18.191.176.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄒承恩
作者(外文):Chou,Chen-En
論文名稱(中文):含有光纖雷射共振腔回授之窄線寬半導體雷射之研究
論文名稱(外文):Narrow-Linewidth Semiconductor Laser with Fiber Laser Cavity Feedback
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):劉文豐
黃承彬
口試委員(外文):Liu, Wen-Fung
Huang, Chen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066530
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:外腔半導體雷射DFB雷射超窄線寬雷射
外文關鍵詞:External Cavity Diode Laser (ECDL)Distributed Feedback LaserUltra-Narrow Linewidth Laser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文介紹一種使半導體雷射線寬變窄的系統。使用外部光纖雷射共振腔來回授光到半導體雷射裡的方式,將原本線寬為MHz級的半導體雷射變窄至<1kHz,並實現單縱模窄線寬雷射。外部光纖雷射共振腔包含雙耦合光纖環形共振器(DCFR),藉由跳接線的端面反射,讓DFB(Distributed Feedback)雷射光不斷經過DCFR,並使部分的光回授到DFB雷射腔中,窄化半導體雷射的線寬。
在本研究中,DCFR扮演很重要的角色,提供其窄帶通濾波器的特性,是使線寬變得更窄的關鍵。接著探討不同耦合比DCFR對雷射線寬的影響,隨著耦合比增加,線寬會越窄,透過自延遲外差法量測,此雷射最窄線寬可來到300Hz。我們認為這是獲得超窄線寬雷射之具有成本效益的方法。
In this paper, we provide a system for narrowing the linewidth of a semiconductor laser. The external fiber laser resonator is used to feedback the light to the semiconductor laser, so that the original MHz linewidth of the semiconductor laser is reduced to<1kHz, becoming a narrow linewidth laser. The external fiber laser resonator contains a dual-coupler fiber ring resonator (DCFR), which allows the DFB laser light to pass through the DCFR in a narrow band. The laser light is then reflected back inside the DFB laser by the end face of the fiber connector through the DCFR. Through this external fiber laser resonator, we observed the narrowing of the linewidth of the laser light.
In this study, DCFR plays an important role in providing its narrow bandpass filter characteristics, which is the key to making the linewidth narrower. Then, the effect of different coupling ratios of DCFR on the laser linewidth is investigated. As the coupling ratio increases, the linewidth becomes narrower. The narrowest linewidth of this laser was measured to be 300 Hz by using the delayed self-heterodyne method. We believe this is the cost-effective method for obtaining super narrow linewidth lasers.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
第一章 序論 1
1.1 論文架構 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 文獻回顧 3
1.4.1 光纖線型共振腔雷射 3
1.4.2 光纖環形共振腔雷射 4
1.4.3 採用自注入鎖定的DFB半導體雷射 6
第二章 基本原理 8
2.1 分佈回饋式(Distributed Feedback,DFB)雷射 8
2.2 雙耦合光纖環形共振器(Double-Coupler Fiber Ring Resonator,DCFR) 9
2.3 外腔式半導體雷射 15
2.4 光纖雷射(Fiber Laser) 16
第三章 實驗架構 19
3.1 外部光纖雷射共振腔回授之窄線寬DFB半導體雷射 19
3.2 實驗元件 22
3.2.1 DFB (Distributed Feedback)半導體雷射 22
3.2.2 摻鉺光纖(Erbium-Doped Fiber,EDF) 23
3.2.3 密集分波多工器(Dense Wavelength Division Mutiplexer,DWDM) 24
3.3 量測雷射線寬 25
第四章 實驗結果與分析 28
4.1 DFB (Distributed Feedback)半導體雷射量測 28
4.2 外部光纖雷射共振腔回授之窄線寬DFB雷射量測 31
4.3 雙耦合光纖環形共振器參數 36
第五章 結論與未來方向 49
5.1 結論 49
5.2 未來方向 50
參考文獻 51
[1] B. Pedersen, A. Bjarklev, J.H. Povlsen, K. Dybdal, and C.C. Larsen, “The design of erbium-doped fiber amplifiers,” Journal of Lightwave Technology, vol. 9 no. 9 pp. 1105-1112, 1991.
[2] H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Applied Optics, vol. 34, no. 4, pp. 667-675, 1995.
[3] K.O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.
[4] T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, and M. Tsubokawa, “Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission,” Journal of Lightwave Technology,
vol. 29, no. 4, pp. 511-515, 2010.
[5] D.M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 355–357, 2002.
[6] K. Numata, J. Camp, M.A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Optics Express, vol. 18 , pp. 22781-22788, 2010.
[7] M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security,” Proceedings of SPIE, 2010.
[8] E. Luvsandamdin, C. Kurbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Trankle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Optics Express, vol. 22, pp.7790-7798, 2014.
[9] B. Lu, F. Wei, Z. Zhang, D. Xu, Z. Pan, D. Chen, and H. Cai, “Research on tunable local laser used in ground-to-satellite coherent laser communication,” Chinese Optics Letters, vol. 13, no. 9, 2015.
[10] B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Optics Letters, vol. 12, pp. 876-878, 1987
[11] W.H. Loh, B.N. Samson, and L. Dong, “High performance single frequency fiber grating-based erbium:ytterbiumco doped fiber lasers,” Lightwave Technology, vol. 16, no. 1, pp. 114-118, 1998.
[12] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 57-62, 2004.
[13] X.P. Cheng, P. Shum, C.H. Tse, J.L. Zhou, M. Tang, W.C. Tan, R.F. Wu, and J.Zhang, “ Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon, ” IEEE Photon Technology Letter, vol. 20, no. 12 , pp. 976-978, 2008.
[14] S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li , and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 323-326, 2013.
[15] C.A. López-Mercado, V.V. Spirin, J.L. Bueno Escobedo, A. Márquez Lucero, P. Mégret, I.O. Zolotovskii, and A.A. Fotiadicde, “Locking of the DFB laser through fiber optic resonator on different coupling regimes,” Optics Communications, vol. 359, pp. 195-199, 2016.
[16] D.A. Korobko, I.O. Zolotovskii, K. Panajotov, V.V. Spirin, and A.A. Fotiadi, “Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator,” Optics Communications, vol. 405, pp. 253-258, 2017.
[17] J.L. BuenoEscobedo, V.V. Spirin, C.A. López-Mercado, A. Márquez Lucero, P. Mégret, I.O. Zolotovskii, and A.A. Fotiadi, “Self-injection locking of the DFB laser through an external ring fiber cavity: application for phase sensitive OTDR acoustic sensor,” Results in Physics, vol. 7, pp. 641-643, 2017.
[18] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” Journal of Lightwave Technology, vol. 28, pp. 3243-3249, 2010.
[19] D. Lu, Q. Yang, and Y. He, “Review of semiconductor distributed feedback lasers in the optical communication band,” Chinese Journal of Lasers, vol. 47, no. 7, 2020.
[20] Jianluo Zhang and J.W.Y. Lit, “Erbium-doped fiber compound-ring laser with a ring filter,” IEEE Photonics Technology Letters, vol. 6, no. 5, pp. 588-590, 1994.
[21] D.G. Rabus and C. Sada, Ring resonators: theory and modeling, Springer International Publishing, pp. 3-46, 2020.
[22] 許立原,1.55m DFB半導體雷射頻寬窄化及穩頻研究,東海大學物理學系碩士班碩士論文,2002。
[23] A.S. Arnold, J.S. Wilson and M.G. Boshier, “A simple extended-cavity diode laser,” Review of Scientific Instruments, vol. 69, no. 3, pp.1236, 1998.
[24] 蔡宗衡,高穩定度超窄線寬光纖布拉格光柵外腔半導體雷射之設計,國立臺北科技大學製造科技研究所碩士班碩士論文,2014。
[25] F.S. Pavone, P. Cancio, C. Corsi, M. Inguscio, R.U. Martinelli , and R.J. Menna, “Linewidth and tuning characteristics of a mirror-extended cavity distributed-feedback 1.65μm diode laser,” Apply Physics, vol. 60, pp. 249-253, 1995.
[26] K.Y. Liou, Y.K. Jhee, G. Eisenstein, R.S. Tucker, R.T. Ku, T.M. Shen, U.K. Chakrabarti, and P.J. Anthony, “Linewidth characteristics of fiber-extended- cavity distributed-feedback lasers,” Apply Physics Letter, vol. 48, pp.1039, 1986.
[27] M.J.F. Digonnet, Rare earth doped fiber lasers and amplifiers, Marcel, 1993.
[28] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9021
[29] L.E. Richter, H.I. Mandelberg, M.S. Kruger, and P.A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE Journal of Quantum Electronics, vol. 22, no. 11, 1986.
[30] H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Optics Communications, vol. 155, no. 1, pp.180-186, 1998.
[31] S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technology Letters, vol. 28, no. 7, pp. 759-762, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *