帳號:guest(18.118.163.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何英銨
作者(外文):Ho, Ying-An
論文名稱(中文):以硒化銦發展可調變發光元件
論文名稱(外文):Tunable light emitting devices based on InSe
指導教授(中文):劉昌樺
指導教授(外文):Liu, Chang-Hua
口試委員(中文):何清華
張祐嘉
口試委員(外文):Ho, Ching-Hwa
Chang, You-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066526
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:38
中文關鍵詞:光致發光應力硒化銦
外文關鍵詞:PhotoluminescenceStrainIndium Selenide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著科技迅速的發展,電子元件不斷的小型化,使得元件大小趨近物理極限,因此各界開始研究二維材料。近期,III-VI族半導體化合物的硒化銦(InSe)因為其優秀的光學及電子特性,受到人們的關注。為了擴展二維元件的應用領域,各界嘗試各種技術去調整材料的光學與電子特性,其中應力是最簡單有效的方式,應力能夠簡單且有效的調變材料能隙,導致二維材料中對於應力的研究開始興起。
迄今為止,已經有許多二維材料在應力方面的研究,儘管如此,對於InSe的應力研究卻屈指可數,因此本論文透過施加不同的應力在InSe上,量測光致發光特性的改變,確定在不同的應力下會使光致發光光譜呈現藍移或是紅移的現象,這種現象間接證明能隙會隨應力而縮減或擴增,同時也觀察到,應力大小會與發光光譜的波峰波長位移量有線性正比的關係。此外,我們透過重複施加應力在InSe上,可以確定不會導致InSe晶格破裂或是無法恢復材料原始狀態,表現出二維材料在應力上的穩定性及重複性。
再來將透過GrT/InSe/GrB結構製成的電致發光元件堆疊在PETG基板上進行量測,成功利用拉伸應力量測到電致發光光譜有紅移的現象,不僅製作出可施加應力的電致發光元件,也證明了在多層結構上能有效地施加應力改變材料的能隙。在這些量測結果中,我們也發現在拉伸應力下發光強度增強,以及壓縮應力下發光強度衰減的現象,因此,我們利用時間相關單光子計數系統量測不同應力下的時間解析光致發光光譜,發現拉伸應力下光致發光壽命時間反而會增加,在這項量測結果中表現出與應力導致的缺陷有關,載子在缺陷能階與導電帶能階來回躍遷,使載子壽命時間增長。同時實驗結果也表示拉伸應力會使內層InSe的光致發光更容易發散出表面並整合到發光系統中,導致不同應力下發光強度的差異。
In recent years, with the rapid development of technology, electronic components have been continuously miniaturized, bringing them closer to the physical limits. As a result, researchers from various fields have started studying two-dimensional materials. Recently, indium selenide (InSe), a III-VI semiconductor compound, has garnered attention due to its excellent optical and electronic properties. To expand the application areas of two-dimensional devices, different techniques are being explored to modify the optical and electronic properties of materials, with strain being the simplest and most effective method. Strain can easily and effectively modulate the bandgap of materials, leading to an increasing interest in the study of strain in two-dimensional materials.
So far, there have been numerous studies on the effects of strain in two-dimensional materials. However, research on strain in InSe is limited. Therefore, in this paper, we conducted experimental investigations into the changes in the photoluminescence characteristics of InSe under different applied strains. We observed that the photoluminescence spectrum of InSe displays either a blue shift or a red shift under different strains, indirectly demonstrating that the bandgap can be reduced or enlarged with strain. Additionally, we discovered a linear relationship between the magnitude of strain and the shift in the peak wavelength of the photoluminescence spectrum. Furthermore, through repeated application of strain on InSe, we confirmed that it does not cause lattice fractures or hinder the material from returning to its original state. This demonstrates the stability and reproducibility of strain in two-dimensional materials.
Next, a vertically stacked structure of graphene top electrode (GrT)/InSe/graphene bottom electrode (GrB) is fabricated on a polyethylene terephthalate glycol-modified (PETG) substrate for electroluminescence measurements. Through the application of tensile strain, a redshift in the electroluminescence spectrum is observed, indicating the successful creation of a strain-inducible electroluminescence device. This not only demonstrates the feasibility of applying strain to control the bandgap in multi-layer structures but also highlights the potential for strain engineering in modifying the material properties. Additionally, the measurements reveal an enhancement in the electroluminescence intensity under tensile strain and a decrease under compressive strain. To further investigate the underlying mechanisms, time-resolved photoluminescence spectra are recorded under different strain conditions. It is found that under tensile strain, the photoluminescence lifetime increases, indicating a relationship with strain-induced defects. The extended lifetime can be attributed to the carrier transitions between defect states and the conduction band, prolonging the carrier lifetime. Moreover, the experimental results indicate that tensile strain promotes the emission of photoluminescence from the inner layers of InSe towards the surface, leading to variations in the emitted light intensity under different strain conditions.
致謝 i
摘要 iv
Abstract vi
目錄 viii
圖目錄 x
第一章 緒論 1
第二章 硒化銦(InSe)的光學及電子特性 6
2.1 InSe晶格結構 7
2.2 光致發光(Photoluminescence, PL) 8
2.2.1 InSe的厚度依賴性 9
2.2.2 InSe的應力依賴性 11
2.3 電致發光(Electroluminescence, EL) 14
第三章 材料與元件製備 16
3.1 二維材料的製備 16
3.1.1 PDMS清洗 16
3.1.2 機械剝離法 17
3.2 乾式轉移法 18
3.3 元件成品 19
第四章 元件量測結果 20
4.1 InSe的光致發光光譜量測 20
4.1.1 光致發光實驗架構 20
4.1.2 InSe光致發光的拉伸應力依賴性 22
4.1.3 InSe光致發光的壓縮應力依賴性 25
4.2 InSe的電致發光光譜量測 26
4.2.1 電致發光實驗架構 27
4.2.2 InSe電致發光光譜的拉伸應力依賴性 29
4.3 InSe的時間解析光致發光光譜量測 30
4.3.1 時間解析光致發光實驗架構 31
4.3.2 InSe時間解析光致發光光譜的拉伸應力依賴性 32
第五章 結論 34
參考文獻 35
[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, vol. 306, no. 5696, pp. 666-669, 2004.
[2]A. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, and Tony Low, "Bandgap engineering of two-dimensional semiconductor materials", npj 2D Materials and Applications, vol. 4, no. 1, pp. 29-49, 2020.
[3]Shenyang Huang, Guowei Zhang, Fengren Fan, Chaoyu Song, Fanjie Wang, Qiaoxia Xing, Chong Wang, Hua Wu and Hugen Yan, "Strain-tunable van der Waals interactions in few-layer black phosphorus", Nature Communications, vol. 10, no. 1, pp. 2447-2454, 2019.
[4]Wei Wu, Jin Wang, Peter Ercius, Nicomario C. Wright, Danielle M. Leppert-Simenauer, Robert A. Burke, Madan Dubey, Avinash M. Dogare, and Michael T. Pettes, "Giant mechano-optoelectronic effect in an atomically thin semiconductor", Nano letters, vol. 18, no. 4, pp. 2351-2357, 2018.
[5]Wei-Ting Hsu, Li-Syuan Lu, Dean Wang, Jing-Kai Huang, Ming-Yang Li, Tay-Rong Chang, Yi-Chia Chou, Zhen-Yu Juang, Horng-Tay Jeng, Lain-Jong Li and Wen-Hao Chang, "Evidence of indirect gap in monolayer WSe2", Nature Communications, vol. 8, no. 1, pp. 929-935, 2017.
[6]Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen & Feng Wang, "Direct observation of a widely tunable bandgap in bilayer graphene", Nature, vol. 459, no. 7248, pp. 820-823, 2009.
[7]Chen Chen, Xiao-bo Lu, Bingchen Deng, Xiao-long Chen, Qui-shi Guo, Cheng Li, Chao Ma, Shao-fan Yuan, Eric Sung, Kenji Watanabe, Takashi Taniguchi, Li Yang, and Feng-nian Xia, "Widely tunable mid-infrared light emission in thin-film black phosphorus", Science advances, vol. 6, no. 7, 2020.
[8]Tian-Yun Chang, Po-Liang Chen, Pei-Sin Chen, Wei-Qing Li, Jia-Xin Li, Ming-Yuan He, Jen-Te Chao, Ching-Hwa Ho, and Chang-Hua Liu, "Van der Waals heterostructure photodetectors with bias-selectable infrared photoresponses", ACS Applied Materials & Interfaces, vol. 14, no. 28, pp. 32665-32674, 2022.
[9]K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, "2D materials and van der Waals heterostructures", Science, vol. 353, no. 6298, 2016.
[10]Hugo Henck, Diego Mauro, Daniil Domaretskiy, Marc Philippi, Shahriar Memaran, Wenkai Zheng, Zhengguang Lu, Dmitry Shcherbakov, Chun Ning Lau, Dmitry Smirnov, Luis Balicas, Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal’ko, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, and Alberto F. Morpurgo, "Light sources with bias tunable spectrum based on van der Waals interface transistors", Nature Communications, vol. 13, no. 1, pp. 3917-3924, 2022.
[11]Si-min Feng, Zhong Lin, Xin Gan, Rui-tao Lv, and Mauricio Terrones, "Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers", Nanoscale Horizons, vol. 2, no. 2, pp. 72-80, 2017.
[12]Yi-jun Liu, Ming-hui Wu, Zhao-yang Sun, Sheng-xue Yang, Chun-guang Hu, Li Huang, Wan-fu Shen, Bin Wei, Zhong-chang Wang, Shi-qi Yang, Yu Ye, Yan Li, and Cheng-bao Jiang, "Synthesis of low-symmetry 2D Ge(1−x)SnxSe2 alloy flakes with anisotropic optical response and birefringence", Nanoscale, vol. 11, no. 48, pp. 23116-23125, 2019.
[13]S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. Mcintyre, K. Mistry, A. Murthy, "A 90-nm logic technology featuring strained-silicon", IEEE Transactions on electron devices, vol. 51, no. 11, pp. 1790-1797, 2004.
[14]Giulio Cocco, Emiliano Cadelano, and Luciano Colombo, "Gap opening in graphene by shear strain", Physical Review B, vol. 81, no. 24, 2010.
[15]Sheng-xue Yang, Yu-jia Chen, Cheng-bao Jiang, "Strain engineering of two-dimensional materials: Methods, properties, and applications", InfoMat, vol. 3, no. 4, pp. 397-420, 2021.
[16]G. W. Mudd, M. R. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. Makarovsky, L. Eaves, M. Potemski, V. I. Fal’ko and A. Patanè, "The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals", Scientific reports, vol. 6, no. 1, p. 39619, 2016.
[17]Mauro Brotons-Gisbert, Daniel Andres-Penares, Joonki Suh, Francisco Hidalgo, Rafael Abargues, Pedro J. Rodríguez-Cantó, Alfredo Segura, Ana Cros, Gerard Tobias, Enric Canadell, Pablo Ordejón, Junqiao Wu, Juan P. Martinez-Pastor, and Juan F. Sánchez-Royo, "Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap", Nano letters, vol. 16, no. 5, pp.3221-3229, 2016.
[18]Chia-Wei Chiang, Golam Haider, Wei-Chun Tan, Yi-Rou Liou, Ying-Chih Lai, Rini Ravindranath, Huan-Tsung Chang, and Yang-Fang Chen, "Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots", ACS applied materials & interfaces, vol. 8, no. 1, pp. 466-471, 2016.
[19]Hyungjin Kim, Shiekh Zia Uddin, Der-Hsien Lien, Matthew Yeh, Nima Sefidmooye Azar, Sivacarendran Balendhran, Taehun Kim, Niharika Gupta, Yoonsoo Rho, Costas P. Grigoropoulos, Kenneth B. Crozier & Ali Javey, " Actively variable-spectrum optoelectronics with black phosphorus", Nature, vol. 596, no. 7871, pp. 232-237, 2021.
[20]Chullhee Cho, Joeson Wong, Amir Taqieddin, Souvik Biswas, Narayana R. Aluru, SungWoo Nam, and Harry A. Atwater, "Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers", Nano letters, vol. 21, no. 9, pp. 3956-3964, 2021.
[21]Denis A. Bandurin, Anastasia V. Tyurnina, Geliang L. Yu, Artem Mishchenko, Viktor Zólyomi, Sergey V. Morozov, Roshan Krishna Kumar, Roman V. Gorbachev, Zakhar R. Kudrynskyi, Sergio Pezzini, Zakhar D. Kovalyuk, Uli Zeitler, Konstantin S. Novoselov, Amalia Patanè, Laurence Eaves, Irina V. Grigorieva, Vladimir I. Fal'ko, Andre K. Geim & Yang Cao, "High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe", Nature nanotechnology, vol. 12, no. 3, pp. 223-227, 2017.
[22]Sidong Lei, Liehui Ge, Sina Najmaei, Antony George, Rajesh Kappera, Jun Lou†, Manish Chhowalla, Hisato Yamaguchi, Gautam Gupta, Robert Vajtai, Aditya D. Mohite, and Pulickel M. Ajayan, " Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe", ACS nano, vol. 8, no. 2, pp. 1263-1272, 2014.
[23]Wei Feng, Xin Zhou, Wei Quan Tian, Wei Zheng, and PingAn Hu, "Performance improvement of multilayer InSe transistors with optimized metal contacts," Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 3653-3658, 2015.
[24]Garry W. Mudd, Simon A. Svatek, Tianhang Ren, Amalia Patanè, Oleg Makarovsky, Laurence Eaves, Peter H. Beton, Zakhar D. Kovalyuk, George V. Lashkarev, Zakhar R. Kudrynskyi, Alexandr I. Dmitriev, "Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement", Advanced Materials, vol. 25, no. 40, pp. 5714-5718, 2013.
[25]Shengxue Yang a, Yan Li a, Xiaozhou Wang b, Nengjie Huo a, Jian-Bai Xia a, Shu-Shen Li a and Jingbo Li, "High performance few-layer GaS photodetector and its unique photo-response in different gas environments", Nanoscale, vol. 6, no. 5, pp. 2582-2587, 2014.
[26]Wenjing Jie, Xi Chen, Dian Li, Lu Xie, Yeung Yu Hui, Shu Ping Lau, Xiaodong Cui, and Jianhua Hao, "Layer‐dependent nonlinear optical properties and stability of non‐centrosymmetric modification in few‐layer GaSe sheets", Angewandte Chemie International Edition. vol. 54, no. 4, pp. 1185-1189, 2015.
[27]Zhenxing Wang, Kai Xu, Yuanchang Li, Xueying Zhan, Muhammad Safdar, Qisheng Wang, Fengmei Wang, and Jun He, "Role of Ga vacancy on a multilayer GaTe phototransistor", ACS nano, vol. 8, no. 5, pp. 4859-4865, 2014.
[28]Xin Tao and Yi Gu, "Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers", Nano letters, vol. 13, no. 8, pp. 3501-3505, 2013.
[29]Chaoyu Song, Shenyang Huang, Chong Wang, Jiaming Luo, and Hugen Yan, "The optical properties of few-layer InSe", Journal of Applied Physics, vol. 128, no. 6, 2020.
[30]Thorsten Schweizer, Heiko Kubach, and Thomas Koch, "Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems", Automotive and Engine Technology, vol. 6, pp. 275-287, 2021.
[31]Chaoyu Song, Fengren Fan, Ningning Xuan, Shenyang Huang, Guowei Zhang, Chong Wang, Zhengzong Sun, Hua Wu, and Hugen Yan, " Largely tunable band structures of few-layer InSe by uniaxial strain", ACS applied materials & interfaces, vol. 10, no. 4, pp. 3994-4000, 2018.
[32]Ting Hu, Jian Zhou, and Jinming Dong, " Strain induced new phase and indirect–direct band gap transition of monolayer InSe", Physical Chemistry Chemical Physics, vol. 19, no. 32, pp. 21722-21728, 2017
[33]C Hugo Henck, Diego Mauro, Daniil Domaretskiy, Marc Philippi, Shahriar Memaran, Wenkai Zheng, Zhengguang Lu, Dmitry Shcherbakov, Chun Ning Lau, Dmitry Smirnov, Luis Balicas, Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal’ko, Ignacio Gutiérrez-Lezama, Nicolas Ubrig & Alberto F. Morpurgo, "Light sources with bias tunable spectrum based on van der Waals interface transistors", Nature communications, vol. 13, no. 1, p. 3917, 2022.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *