帳號:guest(3.145.104.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許晉嘉
作者(外文):Hsu, Chin-Chia
論文名稱(中文):中紅外光矽-黑磷一維光子晶體混成雷射之研究
論文名稱(外文):Mid-Infrared Si - Black Phosphorus 1D Photonics Crystal Hybrid Laser
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):姚欣佑
劉昌樺
口試委員(外文):Yao, Hsin-Yu
Liu, Chang-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066519
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:116
中文關鍵詞:一維光子晶體分佈回饋式雷射黑磷閾值增益中紅外光耦合模態理論傳遞矩陣法
外文關鍵詞:1D photonics crystalDistributed Feedback LaserBlack phosphorusthreshold gainMid-infraredCoupled mode theoryTransfer matrix method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於常見的MIR雷射時常需要操作在低溫環境下,原因是其使用的材料通常為III-V族半導體,而III-V族半導體在室溫下的載子遷移率偏低且電子電洞容易發生非輻射的複合效應,這是導致常見的MIR雷射在室溫下效率不佳的原因。
本論文主要是於SOI基板上設計一維光子晶體雷射共振腔(包含2^nd order surface emission DFB lasers 以及 1st order phase-shifted edge emission DFB lasers)搭配二維材料-黑磷作為雷射增益介質的混成雷射,目的是為了製作出一個能操作在室溫環境、低閾值且單模輸出的中紅外光雷射(波段約為3.6 um左右)。
並基於耦合模態理論(Coupled Mode Theory)以及傳遞矩陣法(Transfer Matrix Method),透過撰寫MATLAB scripts數值模擬運算,來分析二階面射型DFB(2^nd order surface emission DFB lasers)與一階相位平移邊射型DFB雷射(1st order phase-shifted edged emission DFB lasers)各共振模態之閾值增益係數以及共振波長。
並以Duty Cycle以及蝕刻深度為變因進行優化,分析這些變因對於二階面射型DFB與一階相位平移DFB雷射的閾值增益係數之影響,設計出較低閾值增益且共振波長落在大約 3.6 um 左右的中紅外光雷射共振腔。 
Common MIR lasers often need to operate in low-temperature environments because the materials used are usually III-V semiconductors. The carrier mobility of III-V semiconductors at room temperature is low and electron holes are prone to occur non-radiative recombination effect are the reasons why common MIR lasers are not efficient at room temperature.
In this thesis , we mainly designs a one-dimensional photonic crystal laser resonant cavity (including 2^nd order surface emission DFB lasers and 1st order phase-shifted edged emission DFB lasers) on an SOI substrate with a two-dimensional material - black phosphorus as the laser gain medium . The purpose of the hybrid laser is to create a mid-infrared light laser that can operate at room temperature, has a low threshold and has a single-mode output (the band is about 3.6 um).
Based on the Coupled Mode Theory and Transfer Matrix Method, we wrote MATLAB scripts to perform numerical simulation operations and to analyze the threshold gain coefficient and resonance wavelength of each resonance mode between 2^nd surface emission DFB lasers and 1st edged emission DFB lasers.
Optimization was carried out using Duty Cycle and etching depth as variables, and analyze the impact of these variables on the threshold gain coefficients of the 2^nd order surface-emitting DFB and 1st order phase-shifted DFB lasers , to design a mid-infrared laser resonant cavity with a lower threshold gain and the resonance wavelength falling within of approximately 3.6 um.
摘要 1
Abstract 2
致謝 3
目錄 5
圖目錄 8

第一章 緒論 13
1.1 研究動機 (Motivation) 13
1.2 光子晶體雷射(Photonics Crystal Laser) 15
1.3 二維材料 – 黑磷 (Black phosphorus) 18

第二章 理論介紹 21
2.1 耦合模態理論 (Coupled Mode Theory) 21
2.1.1 色散關係 (Dispersion Relation) 35
2.1.2 有限長度光柵結構的反射與穿透 (Reflectance and Transmittance of a Finite Length Grating) 37
2.1.3 閾值條件 (Threshold Condition) 39
2.2 傳遞矩陣法 (Transfer Matrix Method) 41
2.2.1 一般光柵結構的傳遞矩陣 42
2.2.2 利用傳遞矩陣得到振盪條件方程式 44
2.2.3 π/2相位平移DFB雷射原理 45
2.2.4 π/2相位平移DFB雷射的傳遞矩陣 48

第三章 元件設計與模擬 53
3.1 DFB結構簡介 (Introduction of DFB structures) 53
3.2 模擬流程圖 (Flow Chart of Simulation) 56
3.3 模擬分析 (Analysis of Simulation Results) 58
3.3.1 變因 :「Duty Cycle」對耦合係數的影響 58
3.3.2 變因 :「蝕刻深度」對耦合係數的影響 60
3.3.3 變因 :「蝕刻深度」對閾值增益的影響 62
3.3.4 邊界散射結構 (Scattering Structure on edges) 78
3.3.5 Final Design 88

第四章 元件製程 96
4.1 製程流程 (Process Flow) 96
4.2 詳細製程介紹 (Fabrication) 96

第五章 元件量測 99
5.1 量測結果 (Measurement Results) 99
5.2 問題與討論 (Problems & Discussions) 102
5.3 未來改善方向 (Directions for Improvements) 104
5.3.1 材料方面 (Material Improvements) 104
5.3.2 元件設計方面 (Device Design Improvements) 106
5.3.3 製程方面 (Fabrication Improvements) 111
5.3.4 量測方面 (Measurement Improvements) 112

第六章 結論 113

參考文獻 115
[1] Bullock, J., et al., Polarization-resolved black phosphorus / molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 2018. 12(10): p. 601-607
[2] Chang, T.Y., et al., Black phosphorus mid-Infrared light-emitting diodes integrated with silicon photonic waveguides. Nano Letters, 2020. , 2020. 20(9): p. 6824-6830
[3] Familia, A.M. and A. Sarangan, Threshold gain analysis of second order distributed feedback lasers based on 2- methoxy-5-(2 '-ethylhexyloxy)-1,4-phenylenevinylene. Optics Communications, 2008. 281(2): p. 310-318.
[4] Hadley, G.R., Transpatent boundry-condition for beam propagation. Optics Letters, 1991. 16(9): p. 624-626.
[5] Huang, Y., et al., Mid-infrared black phosphorus surface-emitting laser with an open microcavity. ACS Photonics, 2019. 6(7): p. 1581-1586.
[6] Liang, Y., et al., Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects. Optics Express, 2012. 20(14): p. 15945-15961.
[7] Marchetti, R., et al., Coupling strategies for silicon photonics integrated chips invited. Photonics Research, 2019. p. 201-239.
[8] W. Streifer, R.D. Burnham, and D.R. Scifres, Effect of external reflectors on longitudinal modes of distrbuted feedback lasers. IEEE Journal of Quantum Electronics, 1975. QE11(4): p. 154-161.
[9] W. Streifer, R.D. Burnham, and D.R. Scifres, Radiation losses in distributed feedback lasers and longitudinal mode selection. IEEE Journal of Quantum Electronics , 1976. 12(11): p. 737-739.
[10] W. Streifer , D.R. Scifres, and R.D. Burnham, Coupled wave analysis of DFB and DBR lasers. Ieee Journal of Quantum Electronics, 1977. 13(4): p. 134-141.
[11] Zhang, Y.S., et al., Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Advanced Materials, 2020. 32(17).
[12] W. Streifer, R. D. Burnham, and D. R. Scifres, Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides. IEEE Journal Quantum Electron., July. 1976. vol. QE-12: p. 422-428
[13] W. Streifer, R. D. Burnham, and D. R. Scifres, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides II : Blazing effects,” IEEE Journal Quantum Electron., Aug. 1976. vol. QE-12: p. 494-499
[14] H. Kogelnik and C. V. Shank, “Coupled mode theory of distributed feedback lasers,” J. Appl. Phys., 1972. vol. 43: p. 2327-2335.
[15] L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photon., 2011. Rev. 5:p. 647–658.
[16] W. Kunishi, D. Ohnishi, E. Miyai, K. Sakai, and S. Noda, “High-power single-lobed surface-emitting photonics crystal laser,” Conference on Lasers and Electro-Optics (CLEO), CMKK1, Long Beach, May, 2006.
[17] S. H. Macomber, “Nonlinear analysis of surface-emitting distributed feedback lasers,” IEEE J. Quantum Electron., 1990:p. 2065–2074.
[18] H. A. Haus, “Gain saturation in distributed feedback lasers,” Appl. Opt. 14, 1975 :p: 2650–2652.
[19] K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun.23, p: 1335–1340. (2005)
[20] C.H. Chen, L.H. Chen, and Q.M. Wang, Coupling coefficients of gain-coupled distributed feedback lasers with absorptive grating, Electron. Lett., 32, p: 1288-1290, (1996).
[21] 盧廷昌 , 王興宗 ,《半導體雷射技術》
[22] Du, H. W., Lin, X., Xu, Z. M., Chu, D. W.,Recent developments
in black phosphorus transistors, Journal of Materials Chemistry C,
p: 8760-8775. (2015)
[23] Zhang Z. C., Li L. K., Horng J. ,et al.,Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors, Nano Letters, p:6097-6103, (2017)
[24] Huang, Y. Q., Ning, J. Q., Chen, H. M., et al., Mid-infrared black phosphorus surface-emitting laser with an open microcavity, Acs Photonics, p: 1581-1586, (2019)
[25] Lee, T. H., Kim, S. Y., Jang, H. W., Black phosphorus: critical review and potential for water splitting photocatalyst, Nanomaterials, vol.6, (2016)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *