帳號:guest(3.147.238.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯博瀗
作者(外文):Ke, Bo-Xian
論文名稱(中文):用於探測2X2 MZI 相位資訊的非接觸式探針矽光子電路
論文名稱(外文):Demonstration of a non-invasive optoelectronic probe for monitoring the phase information of a tunable 2-by-2 Mach-Zehnder interferometer in Si photonic circuits
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):陳彥宏
吳俊毅
口試委員(外文):Chen, Yen-Hung
WU, Ju-Nyi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066515
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:76
中文關鍵詞:馬赫-曾德爾干涉儀矽光子電路相位校正
外文關鍵詞:Mach-Zehnder interferometerSi photonic circuitsPhase error correction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:91
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前,由於可編程的矽光子積體光路的出現,使得外部偵測器與內部偵測器變得格外重要。大部分可編程式矽光子晶片是由多個MZI組成,並對相移器加熱後進行相位校正後使用外部偵測器觀察校正結果,此種晶片又稱作光路式現場可程式化邏輯閘陣列(Optical-FPGA),而此種積體光路隨著光路越來越複雜,負責追蹤光路的偵測器也隨之增加,導致能量損耗,故降低能量損失的偵測方式成為一重要課題,現今如同透明式偵測器的形式有非接觸探針ContactLess Integrated Photonic Probe(CLIPP),但是這僅僅是對於單一波導的偵測。
因此本論文提出一種應用於2x2 MZI的非接觸式探針,我們是利用波導的表面態吸收效應(Surface state absorption)使其改變波導的導納值,在基於這個原理基礎下,將四個 CLIPP 等效為惠斯登電橋組成一非接觸式探針卡,並利用此等效惠斯登電橋作為偵測2X2 MZI的偵測器。並透過對MZI進行相位校正後使用紅外線相機進行輔助偵測,再使用透過鎖向放大器對此探針卡檢測當MZI在3 dB與非3 dB時,此非接觸式探針的相位與校正結果。
Due to the emergence of programmable silicon photonic integrated circuits, both external and internal detectors have become particularly important. Most programmable silicon photonic chips are composed of multiple Mach-Zehnder interferometers (MZIs), and after heating the phase shifter for phase calibration, external detectors are used to observe the calibration results. This type of chip is also referred to as an Optical Field-Programmable Gate Array (Optical-FPGA). As the complexity of the integrated optics increases, the number of detectors responsible for tracking optical paths also increases, leading to energy losses. Therefore, reducing energy loss in the detection process has become an important issue. Currently, there exists a form of transparent detector known as the ContactLess Integrated Photonic Probe (CLIPP), but it is only suitable for detecting a single waveguide.

Hence, this paper proposes a non-contact probe designed for use with 2x2 MZIs. We leverage the surface state absorption effect of the waveguide to alter its conductance. Based on this principle, four CLIPPs are equivalently transformed into a Wheatstone bridge to form a non-contact probe card. We then use this equivalent Wheatstone bridge as a detector for 2x2 MZIs. After conducting phase calibration on the MZIs and utilizing an infrared camera for auxiliary detection, we further employ a lock-in amplifier to assess the phase and calibration results of this non-contact probe card when the MZI is in both 3 dB and non-3 dB states.
摘要 1
Abstract 2
致謝 3
目錄 5
圖目錄 7
第一章 緒論 10
1.1矽光子 10
1.2研究動機 16
1.3論文架構 17
第二章 理論背景介紹 18
2.1 矽光子波導與MZI 18
2.2 波導中的表面態 23
2.3 光學相位的探測方式 27
2.4 非接觸式探針 29
2.5 影像光柵探測 35
第三章 元件設計 39
3.1 光路等效模型及公式 39
3.2 晶片基底形成之電路簡化式 43
3.3 等效交流式惠斯登電橋模型與簡化模型與公式 50
第四章 實驗量測與分析 52
4.1 MZI的影像光柵探測 52
4.2鎖相迴路與影像光柵的系統架設 57
4.3量測結果與分析 59
第五章 結論 72
5.1結論 72
5.2未來展望 73
第六章 參考文獻 74


[1] X. Chen et al., "The emergence of silicon photonics as a flexible technology platform," Proceedings of the IEEE, vol. 106, no. 12, pp. 2101-2116, 2018.
[2] P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, "Silicon photonic devices and integrated circuits," Nanophotonics, vol. 3, no. 4-5, pp. 215-228, 2014.
[3] M. Tan et al., "Towards electronic-photonic-converged thermo-optic feedback tuning," Journal of Semiconductors, vol. 42, no. 2, p. 023104, 2021.
[4] W. Bogaerts et al., "Programmable photonic circuits," Nature, vol. 586, no. 7828, pp. 207-216, 2020.
[5] M. AlTaha et al., "Monitoring and automatic tuning and stabilization of a 2× 2 MZI optical switch for large-scale WDM switch networks," Optics Express, vol. 27, no. 17, pp. 24747-24764, 2019.
[6] M. Hattink, Z. Zhu, and K. Bergman, "Automated tuning and channel selection for cascaded micro-ring resonators," in Metro and Data Center Optical Networks and Short-Reach Links III, 2020, vol. 11308: SPIE, pp. 160-168.
[7] S. Saeedi and A. Emami, "Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization," Optics express, vol. 23, no. 17, pp. 21875-21883, 2015.
[8] H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, "Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits," Optica, vol. 6, no. 1, pp. 84-91, 2019.
[9] H. Jayatilleka et al., "Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters," Optics express, vol. 23, no. 19, pp. 25084-25097, 2015.
[10] F. Morichetti et al., "Non-invasive on-chip light observation by contactless waveguide conductivity monitoring," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 292-301, 2014.
[11] S. Grillanda and F. Morichetti, "Light-induced metal-like surface of silicon photonic waveguides," Nature communications, vol. 6, no. 1, p. 8182, 2015.
[12] F. Zanetto et al., "WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation," Journal of Lightwave Technology, vol. 38, no. 21, pp. 6000-6006, 2020.
[13] S. Grillanda et al., "Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics," Optica, vol. 1, no. 3, pp. 129-136, 2014.
[14] C. L. Lu et al., “Image-Resolved Phase Error Correction for MZI-Based Programmable Photonic Integrated Circuits”, Optics & Photonics Taiwan International Conference (OPTIC), pp. 1-2. (2022, December).
[15] W. A. Zortman, D. C. Trotter, and M. R. Watts, "Silicon photonics manufacturing," Optics express, vol. 18, no. 23, pp. 23598-23607, 2010.
[16] F. Toso et al., "Electronics-photonics co-design for robust control of optical devices in dense integrated photonic circuits," in 2021 IEEE Custom Integrated Circuits Conference (CICC), 2021: IEEE, pp. 1-8.
[17] A. Weisshaar, H. Lan, and A. Luoh, "Accurate closed-form expressions for the frequency-dependent line parameters of on-chip interconnects on lossy silicon substrate," IEEE transactions on advanced packaging, vol. 25, no. 2, pp. 288-296, 2002.
[18] C. N. Chiu, "Closed‐form expressions for the line‐coupling parameters of coupled on‐chip interconnects on lossy silicon substrate," Microwave and Optical Technology Letters, vol. 43, no. 6, pp. 495-498, 2004.
[19] L. B. Soldano and E. C. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of lightwave technology, vol. 13, no. 4, pp. 615-627, 1995.
[20] F. Ladouceur and L. Poladian, "Surface roughness and backscattering," Optics letters, vol. 21, no. 22, pp. 1833-1835, 1996.
[21] D. Melati, A. Melloni, and F. Morichetti, "Real photonic waveguides: guiding light through imperfections," Advances in Optics and Photonics, vol. 6, no. 2, pp. 156-224, 2014.
[22] J. Wells, J. Kallehauge, and P. Hofmann, "Surface-sensitive conductance measurements on clean and stepped semiconductor surfaces: Numerical simulations of four point probe measurements," Surface science, vol. 602, no. 10, pp. 1742-1749, 2008.
[23] P. Zhang et al., "Electronic transport in nanometre-scale silicon-on-insulator membranes," Nature, vol. 439, no. 7077, pp. 703-706, 2006.
[24] Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Optics express, vol. 15, no. 25, pp. 16604-16644, 2007.
[25] T. Baehr-Jones, M. Hochberg, and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Optics Express, vol. 16, no. 3, pp. 1659-1668, 2008.
[26] H. Chen, X. Luo, and A. W. Poon, "Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator," Applied physics letters, vol. 95, no. 17, 2009.
[27] J. J. Ackert, A. S. Karar, J. C. Cartledge, P. E. Jessop, and A. P. Knights, "Monolithic silicon waveguide photodiode utilizing surface-state absorption and operating at 10 Gb/s," Optics express, vol. 22, no. 9, pp. 10710-10715, 2014.
[28] L. Zhou, H. Zhu, H. Zhang, and J. Chen, "Photoconductive effect on pip micro-heaters integrated in silicon microring resonators," Optics express, vol. 22, no. 2, pp. 2141-2149, 2014.
[29] Z. Wang, H. Liu, Z. Zhang, K. Zou, and X. Hu, "Infrared photoconductor based on surface-state absorption in silicon," Optics Letters, vol. 46, no. 11, pp. 2577-2580, 2021.
[30] T. Baehr-Jones, M. Hochberg, and A. Scherer, "All-optical modulation in a silicon waveguide based on a single-photon process," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 5, pp. 1335-1342, 2008.
[31] M. Carminati, M. Vergani, G. Ferrari, L. Caranzi, M. Caironi, and M. Sampietro, "Accuracy and resolution limits in quartz and silicon substrates with microelectrodes for electrochemical biosensors," Sensors and Actuators B: Chemical, vol. 174, pp. 168-175, 2012.
[32] R. Garg, I. Bahl, and M. Bozzi, Microstrip lines and slotlines. Artech house, 2013.
[33] N. C. Harris et al., "Large-scale quantum photonic circuits in silicon," Nanophotonics, vol. 5, no. 3, pp. 456-468, 2016.
[34] P. R. Bannister, "Applications of complex image theory," Radio science, vol. 21, no. 4, pp. 605-616, 1986.
[35] Y. J. Yoon and B. Kim, "A new formula for effective dielectric constant in multi-dielectric layer microstrip structure," in IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 00TH8524), 2000: IEEE, pp. 163-167.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *