|
(1) J. Ping Liu et al. Skyrmions. Topological Structures, Properties, and Applications. (2017). (2) Naoto Nagaosa et al. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology Vol. 8 , 899-911 Dec (2013). (3) Yanan Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature Vol. 588 , 23 Dec (2020). (4) Skyrme et al. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962). (5) Lazar Kish. Skyrmions in Chiral Magnets. 13 May (2018). (6) S. Muhlbauer et al. Skyrmion Lattice in a Chiral Magnet. Science 323, 915–919 (2009). (7) Yu, X.Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010). (8) K. Everschor-Sitte et al. Perspective:Magnetic skyrmions—Overview of recent progress in an active research field. J. Appl. Phys. 124, 240901 (2018). (9) Cheng Guo et al. Meron Spin Textures in Momentum Space. Physical Review Letters 124, 106103 (2020). (10) YiJie Shen. Topological bimeronic beams. Optics Letters Vol. 46, No. 15 (2021). (11) 邱國斌, 蔡定平. 金屬表面電漿簡介。物理雙月刊廿八卷二期 (2006). (12) Todd van Mechelen et al. Universal spin-momentum locking of evanescent waves. Optica Vol. 3, No. 2 (2016) (13) Konstantin Y. Bliokh et al. Extraordinary momentum and spin in evanescent waves. Nature Communications 10.1038/ncomms4300 (2014). (14) Ellingson et al. Electromagnetics, Vol 2, Jan (2020). (15) Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 7 Sep (2018). (16) Timothy J et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, 386 24 Apr (2020). (17) Chunyan bai et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Optics Express Vol. 28, No. 7, 10320 30 March (2020). (18) Qiang Zhang et al. Bloch-type photonic skyrmions in optical chiral multilayers. Physical Review Research 3, 023109 (2021). (19) Yanan Dai et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 011420 (2022). (20) Atreyie Ghosh et a. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 041413 (2021). (21) Grisha Spektor et al. Spin-patterned plasmonics:towards optical access to topological-insulator surface states. Optics Express, Vol. 23, No. 25 32759 14 Dec (2015). (22) X. Z. Yu1 et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature, Vol 564, 95 6 Dec (2018). (23) Yong-Shi Wu et al. Gauge Invariance of Fractionally Charged Quasiparticles and Hidden Topological Zn Symmetry. Physical Review Letters Vol 66, No 5, 4 Feb (1991). (24) Ajit C. Balram et al. Fractionally charged skyrmions in fractional quantum Hall effect. Nature Communications 6:8981, 26 Nov (2015). (25) Yiqi Fang et al. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale. Physical Review A 95, 023821 (2017). (26) Tamelia Alia et al. Propagation of optical vortices with fractional topological charge in free space. Proc. SPIE 9194, Laser Beam Shaping XV, 91940V. Sep (2014). (27) Hao Zhang et al. Review on fractional vortex beam. Nanophotonics 11(2): 241–273 (2022). (28) Mateusz Krol et alObservation of second-order meron polarization textures in optical microcavities. Optica Vol. 8, No. 2 Feb (2021). (29) Mark R et al. Isolated optical vortex knots. Nature Physics Vol 6, Feb (2010). (30) Hugo Larocque et al. Optical framed knots as information carriers. Nature communications 11:5119 (2020). (31) Peng Li et al. Optical vortex knots and links via holographic metasurfaces. Advances in Physics: X, Vol. 6, NO. 1, 1843535 (2021). (32) Zulfidin Khodzhaev et al. Hopfion Dynamics in Chiral Magnets. J. Phys.: Condens. Matter 34 225805 (2022).
|