帳號:guest(18.191.176.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林翰廷
作者(外文):Lin, Han-Ting
論文名稱(中文):微米金屬塊材上電漿波自旋紋理隨高度而演化之探討
論文名稱(外文):Investigation on the height-dependent plasmonic spin texture evolution through a metallic micro-bulk
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):朱士維
牟中瑜
口試委員(外文):Chu, Shi-Wei
Mou, Chung-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066509
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:49
中文關鍵詞:拓樸光學表面電漿波自旋準粒子
外文關鍵詞:topological quasi-particlesurface plasmaspinskyrmionmeron
相關次數:
  • 推薦推薦:0
  • 點閱點閱:199
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光學拓樸準粒子skyrmion和meron描述光與物質交互作用系統下所產生的自旋紋理的拓樸保護特性,在磁性材料儲存、自旋電子學元件與光學資訊傳遞應用中扮演重要角色。傳統上,可以用奈米金屬slit結構激發表面電漿子Surface plasmon polaritons(SPPs),以此產生Neel-type skyrmion或meron。由於SPPs場的行進特性,無法得到其他型態的拓樸準粒子,我設計新的結構引入Localized surface plasmon(LSP)於結構邊角散射場的影響,讓拓樸準粒子的自旋紋理具有非零的helicity。此外,我們探討表面電漿波的自旋紋理在不同高度下逐漸演化,隨著高度增加,場的機制會從原本SPP主導逐漸轉向LSP主導,最終成功產生出複合型態的拓樸準粒子,例如twisted-type, Bloch-type, anti-type meron lattice。
In light-matter interaction system, optical topological quasi-particles, skyrmion and meron describe the topologically protected spin texture property which has important roles in application of magnetic material storage, spintronics device and optics information transmission. Traditionally, we can excite surface plasmon polaritons(SPPs) through nano-metallic slit structure to produce Neel-type skyrmion or meron. Due to transverse character of SPPs field, we cannot get other type topological quasi-particles. We design a new structure to introduce the scattered field of localized surface plasmon(LSP) which is confined at edges so that spin texture of quasi-particle can has non-zero helicity. On the other hand, we investigate on plasmonic spin texture evolution at different heights. Through increasing height, fields is originally dominated by SPP gradually turn into by LSP and we successfully create multi-types topological quasi-particle at the end, such as twisted-type, Bloch-type, anti-type meron lattice.
第一章 序論
1-1 Topology theory and topological quasi-particle--------------2
1-2 Winding number----------------------------------------------3
1-3 Skyrmion and skyrmion zoology-------------------------------6
1-4 Meron-------------------------------------------------------8
1-5 Surface plasma----------------------------------------------9
第二章 實驗與模擬
2-1 Electric Neel-type skyrmion
2-1-1 Experiment-------------------------------------------------14
2-1-2 Simulation-------------------------------------------------16
2-2 Spin skyrmion
2-2-1 FDTD simulation--------------------------------------------17
2-2-2 Structure design-Bloch-type, twisted-type-----------------19
2-2-3 Influence of LSP-------------------------------------------22
2-3 Meron
2-3-1 Experiment meron lattice-----------------------------------23
2-3-2 FDTD simulation and analytical solution--------------------24
2-3-3 Structure design-Single twisted-type meron----------------28
第三章 凹結構
3-1 Concave device design--------------------------------------29
3-2 X-Y plane at different heights-----------------------------31
第四章 電漿波自旋紋理演化
4-1 X-Z cross section plane------------------------------------32
4-1-1 Spin and field pattern-------------------------------------32
4-2 X-Y plane at different heights-----------------------------35
4-2-1 Spin and field pattern-------------------------------------35
4-2-2 Winding number calculation---------------------------------41
4-2-3 Swirl of spin----------------------------------------------44
第五章 結論與展望
5-1 Conclusion-------------------------------------------------45
5-2 Future work and prospects----------------------------------47
參考文獻------------------------------------------------------------48
(1) J. Ping Liu et al. Skyrmions. Topological Structures, Properties, and Applications. (2017).
(2) Naoto Nagaosa et al. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology Vol. 8 , 899-911 Dec (2013).
(3) Yanan Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature Vol. 588 , 23 Dec (2020).
(4) Skyrme et al. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).
(5) Lazar Kish. Skyrmions in Chiral Magnets. 13 May (2018).
(6) S. Muhlbauer et al. Skyrmion Lattice in a Chiral Magnet. Science 323, 915–919 (2009).
(7) Yu, X.Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
(8) K. Everschor-Sitte et al. Perspective:Magnetic skyrmions—Overview of recent progress in an active research field. J. Appl. Phys. 124, 240901 (2018).
(9) Cheng Guo et al. Meron Spin Textures in Momentum Space. Physical Review Letters 124, 106103 (2020).
(10) YiJie Shen. Topological bimeronic beams. Optics Letters Vol. 46, No. 15 (2021).
(11) 邱國斌, 蔡定平. 金屬表面電漿簡介。物理雙月刊廿八卷二期 (2006).
(12) Todd van Mechelen et al. Universal spin-momentum locking of evanescent waves. Optica Vol. 3, No. 2 (2016)
(13) Konstantin Y. Bliokh et al. Extraordinary momentum and spin in evanescent waves. Nature Communications 10.1038/ncomms4300 (2014).
(14) Ellingson et al. Electromagnetics, Vol 2, Jan (2020).
(15) Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 7 Sep (2018).
(16) Timothy J et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, 386 24 Apr (2020).
(17) Chunyan bai et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Optics Express Vol. 28, No. 7, 10320 30 March (2020).
(18) Qiang Zhang et al. Bloch-type photonic skyrmions in optical chiral multilayers. Physical Review Research 3, 023109 (2021).
(19) Yanan Dai et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 011420 (2022).
(20) Atreyie Ghosh et a. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 041413 (2021).
(21) Grisha Spektor et al. Spin-patterned plasmonics:towards optical access to topological-insulator surface states. Optics Express, Vol. 23, No. 25 32759 14 Dec (2015).
(22) X. Z. Yu1 et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature, Vol 564, 95 6 Dec (2018).
(23) Yong-Shi Wu et al. Gauge Invariance of Fractionally Charged Quasiparticles and Hidden Topological Zn Symmetry. Physical Review Letters Vol 66, No 5, 4 Feb (1991).
(24) Ajit C. Balram et al. Fractionally charged skyrmions in fractional quantum Hall effect. Nature Communications 6:8981, 26 Nov (2015).
(25) Yiqi Fang et al. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale. Physical Review A 95, 023821 (2017).
(26) Tamelia Alia et al. Propagation of optical vortices with fractional topological charge in free space. Proc. SPIE 9194, Laser Beam Shaping XV, 91940V. Sep (2014).
(27) Hao Zhang et al. Review on fractional vortex beam. Nanophotonics 11(2): 241–273 (2022).
(28) Mateusz Krol et alObservation of second-order meron polarization textures in optical microcavities. Optica Vol. 8, No. 2 Feb (2021).
(29) Mark R et al. Isolated optical vortex knots. Nature Physics Vol 6, Feb (2010).
(30) Hugo Larocque et al. Optical framed knots as information carriers. Nature communications 11:5119 (2020).
(31) Peng Li et al. Optical vortex knots and links via holographic metasurfaces. Advances in Physics: X, Vol. 6, NO. 1, 1843535 (2021).
(32) Zulfidin Khodzhaev et al. Hopfion Dynamics in Chiral Magnets. J. Phys.: Condens. Matter 34 225805 (2022).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *