帳號:guest(3.21.100.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊茵絜
作者(外文):Yang, Yin-Chieh
論文名稱(中文):利用低壓化學氣相沉積法鍍製氮化矽薄膜探討其退火後之光學特性
論文名稱(外文):Study of the optical properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition and subjected to thermal annealing
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):王子敬
井上優貴
口試委員(外文):Wong, Tsz-King
Inoue, Yuki
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066505
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:氮化矽薄膜低壓化學氣相沉積法光學特性退火
外文關鍵詞:low pressure chemical vapor depositionoptical propertiesannealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室參與雷射干涉重力波偵測天文台組織(Laser Interferometer Gravitational-Wave Observatory, LIGO)之研究計畫,使用超大型麥克森干涉儀去偵測重力波,但因為重力波的訊號非常小,容易受到各種雜訊所干擾,在100Hz左右最靈敏的偵測頻率區間,其所主導的雜訊來源為高反射鏡上薄膜的熱擾動雜訊(coating Brownian Noise),而根據fluctuation-dissipation theorem可知道熱擾動雜訊與機械損耗成正比,因此本研究改良可應用於LPCVD之單晶矽懸臂來進行低溫機械損耗的量測。
本實驗室先前已利用電漿輔助式化學氣相沈積法(Plasma Enhanced Chemical Vapor Deposition, PECVD)鍍製氮化矽薄膜材料,並且發現薄膜的光學吸收與薄膜內的N-H鍵和Si-鍵濃度有關,因此為了使薄膜的光學吸收再降低,本實驗室蔡東霖同學開發使用低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition, LPCVD)鍍製不同製程氣體SiH2Cl2/ NH3流量比的氮化矽薄膜,藉由高溫製程環境降低薄膜內的N-H鍵結含量,達到降低光學吸收的效果。而本研究延續其實驗內容,針對低SiH2Cl2/ NH3流量比的氮化矽薄膜材料,透過高溫純氮退火的製程方式,將薄膜內的N-H鍵斷鍵,在Si-鍵濃度不增加太多的狀況下,可使得薄膜的光學吸收再降低。本研究透過改變退火溫度以及增加退火時間的方式,找到擁有最佳光學吸收的氮化矽薄膜材料。
根據本實驗結果,對SiH2Cl2/ NH3流量比為1的氮化矽薄膜材料進行1000℃退火1.5小時後,其在1550nm波長下的光學吸收數值,由未退火時的6.1×10^(-6)降低至1.3×10^(-6),降幅約78%;而在1950nm波長下的光學吸收值由2.5×10^(-5)降低至5.8×10^(-6),降幅約76%。此外,由本實驗室先前之研究結果顯示,薄膜的低溫機械損耗與其N-H鍵結含量呈正相關,所以經過高溫退火後的氮化矽薄膜,不但在光學吸收上有非常優秀的表現,在低溫機械損耗的上也期待會有不錯的結果,可以被期待作為下個世代低溫重力波偵測儀的高反射鏡鍍膜材料。
Our laboratory participates in the research project of the Laser Interferometer Gravitational-Wave Observatory (LIGO), which uses a super-large Michelson interferometer to detect gravitational waves. The gravitational wave signals are very weak and easy to be affected by various noises. The dominant noise source in the most sensitive detection frequency range around 100Hz, is the thermal disturbance noise (coating Brownian noise) of the thin film on the high-reflective mirror. According to the fluctuation-dissipation theorem, it can be known that the thermal disturbance noise is proportional to the mechanical loss. In this study, we improved the silicon cantilever system, which can be applied to LPCVD, to measure low-temperature mechanical loss.
Our laboratory has previously used Plasma Enhanced Chemical Vapor Deposition (PECVD) to coat silicon nitride thin films and found that the optical absorption of thin films is related to the concentration of N-H bonds and Si-bonds in the films. To reduce the optical absorption of the film, Dong-Lin Tsai uses low pressure chemical vapor deposition (LPCVD) to coat silicon nitride films with different process gas flow ratios. The high temperature process environment reduces the N-H bond content in the film and greatly decreases optical absorption. Following his experimental results, for the silicon nitride thin film material with low SiH2Cl2/NH3 flow ratios, to use the high-temperature annealing process to break the N-H bond in the film, so that the optical absorption of the film can be further reduced. In this study, by changing the annealing temperature and increasing the annealing time, the silicon nitride film material with the best optical absorption was found.
According to the results of this study, after annealing the silicon nitride thin film material with SiH2Cl2/NH3 flow ratio of one at 1000℃ for 1.5 hours, its optical absorption value at 1550nm wavelength decreases from 6.1×10^(-6) to 1.3×10^(-6), and the decrease is about 78%; the optical absorption value at 1950nm wavelength decreased from 2.5×10^(-5) to 5.8×10^(-6), a decrease is about 76%. In addition, the low-temperature mechanical loss of the film is positively related to its N-H bond content, hence the silicon nitride film after high-temperature annealing not only has excellent performance in optical absorption, but is also expected to have excellent results in low-temperature mechanical loss. It has the potential to be used as a high-reflective mirror coating material for the next generation of low-temperature gravitational wave detectors.
Abstract i
摘要 iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiii
第一章、 導論 1
1-1 前言 1
1-2 研究動機 3
第二章、 低壓化學氣相沉積(LPCVD)之氮化矽薄膜 6
2-1 LPCVD之氮化矽薄膜製程介紹 6
2-2 不同成分比之氮化矽薄膜基本特性分析 7
2-2.1 薄膜之應力分析 7
2-2.2 薄膜之楊氏係數分析 11
第三章、 以高溫純氮退火降低氮化矽薄膜光學吸收之研究 13
3-1 高溫純氮退火之製程介紹 13
3-2 高溫純氮退火研究動機 13
3-3 不同溫度下高溫純氮退火之薄膜分析 15
3-3.1 厚度分析 15
3-3.2 鍵結密度 15
3-3.3 折射係數與能隙 19
3-3.4 光學吸收 19
3-4 不同時間下高溫純氮退火之薄膜分析 29
3-4.1 厚度分析 29
3-4.2 鍵結密度 30
3-4.3 折射係數與能隙 30
3-4.4 光學吸收 31
3-4.5 最佳退火參數的元素成分比例 33
第四章、 以低溫補氫退火降低氮化矽薄膜光學吸收之研究 36
4-1 低溫補氫退火之製程介紹 36
4-2 低溫補氫退火研究動機 36
4-3 SiN0.91H0.02不同溫度下低溫補氫退火之薄膜分析 37
4-3.1 厚度分析 37
4-3.2 鍵結密度 37
4-3.3 折射係數與能隙 38
4-3.4 光學吸收 38
4-4 SiN0.74不同溫度下低溫補氫退火之薄膜分析 39
4-4.1 厚度分析 40
4-4.2 鍵結密度 40
4-4.3 折射係數與能隙 40
4-4.4 光學吸收 41
第五章、 應用於LPCVD之單晶矽懸臂結構與製程流程設計 43
5-1 單晶矽懸臂結構 43
5-2 單晶矽懸臂製程設計 44
5-3 製程上遇到之困難與解決方案 52
5-3.1 光罩改良以增加蝕刻均勻度 52
5-3.2 改變基板厚度以降低蝕刻區域的厚度差 53
第六章、 總結與未來展望 55
6-1 總結 55
6-2 未來工作 56
6-2.1 應用於LPCVD之單晶矽懸臂低溫機械損耗 56
6-2.2 氮化矽薄膜低溫機械損耗 56
6-2.3 退火後之氮化矽薄膜低溫機械損耗 57
6-2.4 低溫機械損耗之扭力測試 58
參考文獻 60
[1] A. Einstein, “Die grundlage der allgemeinen relativitatstheorie”, Annalen der Physik 49, 769 (1916).
[2] R. A. Hulse, J. H. Taylor, “Discovery of a pulsar in a binary system”, The Astrophysical Journal 195, L51 (1975)
[3] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
[4] LIGO Scientific Collaboration, Instrument Science White Paper 2021, LIGO Document: LIGO-T2100298–v2 (2021).
[5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
[6] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
[7] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
[8] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
[9] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, 2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
[10] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573, http://dcc.ligo.org/LIGO-G1200573-v1/public (2012).
[11] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
[12] I. W. Martin et al., “Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav”, 31, 035019 (2014).
[13] H.W. Pan et al., “Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector”, Phys. Rev. D, 97, 022004 (2018).
[14] Z. L. Huang, “The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films, Master thesis”, National Tsing Hua University (2019).
[15] D. L. Tsai, “Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition for mirror coatings of the laser interferometer gravitational waves detector”, National Tsing Hua University (2021).
[16] 李正中,”薄膜光學與鍍膜技術”,第七版,藝軒圖書出版社(2012).
[17] G. G. Stoney, “The tension of metallic films deposited by electrolysis”, Proc. R. Soc. A 82, 172 (1909).
[18] G. M. Wells, M. Reilly, R. Nachman, F. “Cerrina,Characterization of a Silicon Nitride Mask Membrane Process”, MRS Online Proceedings Library (OPL) 306 (1993).
[19] N. Sharma, M. Hooda, and S. K. Sharma. "Synthesis and characterization of LPCVD polysilicon and silicon nitride thin films for MEMS applications." Journal of Materials , 1-8. (2014)
[20] Yang, Chris, and John Pham. "Characteristic study of silicon nitride films deposited by LPCVD and PECVD." Silicon 10.6 ,2561-2567. (2018)
[21] B. C. Joshi, et al. "LPCVD and PECVD silicon nitride for microelectronics technology." (2000).
[22] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead, and J. M. Parpia, “Stress and silicon nitride: A crack in the universal dissipation of glasses”, Phys. Rev. Lett. 102, 225503 (2009)
[23] C. W. Lee, “Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application”, Master thesis, National Tsing Hua University (2013).
[24] A. Khan, J. Philip, and P. Hess. "Young’s modulus of silicon nitride used in scanning force microscope cantilevers." Journal of Applied Physics 95.4, 1667-1672 (2004)
[25] Makino, Takahiro. "Composition and structure control by source gas ratio in LPCVD SiN x." Journal of the Electrochemical Society 130.2, 450 (1983)
[26] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
[27] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
[28] A. Morimoto, Y. Tsujimura, M. Kumeda, and T. Shimizu, “Properties of hydrogenated amorphous Si-N prepared by various methods”, Jpn. J. Appl. Phys. 24, 1394 (1985).
[29] H. C. Chen, “Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever”, National Tsing Hua University (2017).
[30] L. A. Chang, “Annealing effect on the optical and mechanical properties of nitrogen rich silicon nitride film fabricated by plasma enhance chemical vapor deposition”, National Tsing Hua University (2018).
[31] G. Sasaki, M. Kondo, S. Fujita, and A. Sasaki, “Properties of chemically vapor-deposited amorphous SiNx alloys”, Jpn. J. Appl. Phys. 21, 1394 (1982).
[32] M. M. Guraya, H. Ascolani, G. Zampieri, J. I. Cisneros, J. H. DiasdaSilva, and M. P. Cantao, “Bond densities and electronic structure of amorphous SiNx:H”, Phys. Rev. B 42, 5677 (1990)
[33] N. Kang, “Photothermal common-path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis”, National Tsing Hua University (2017).
[34] F. C. Kuei, “Study of silicon nitride and silicon oxynitride films fabricated by the plasma enhanced chemical vapor deposition method to derive empirical equation of optical absorption”, Master thesis, National Tsing Hua University (2021)
[35] Nugent, C. Thomas, ed, “Chiral amine synthesis: methods, developments and applications”, John Wiley & Sons, (2010).
[36] Lawrence, Stephen A, “Amines: synthesis, properties and applications”, Cambridge University Press, (2004).
[37] https://www.sun.ac.za/english/faculty/science/CAF/Documents/Section1_Introduction%20to%20Hyperspectral%20imaging.pdf
[38] F. Ay, and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides”, Optical materials 26.1: 33-46. (2004)
[39] María González González, Juan Carlos Cabanelas and Juan Baselga ,“Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, Infrared Spectroscopy - Materials Science, Engineering and Technology, Theophile Theophanides, IntechOpen”, DOI: 10.5772/36323. Available from: https://www.intechopen.com/chapters/36178 (April 25th 2012).
[40] B. M. Zwickl, et al. "High quality mechanical and optical properties of commercial silicon nitride membranes." Applied Physics Letters 92.10, 103125(2008)
[41] Steinlechner, Jessica, et al. "Optical absorption of silicon nitride membranes at 1064 nm and at 1550 nm." Physical Review D 96.2, 022007 (2017)
[42] J. Steinlechner, et al. "Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing." Physical Review Letters 120.26, 263602 (2018):
[43] V. Verlann, et al., “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD”, Thin Solid Films 517, 3499 (2009)
[44] T. Makino and M. Maeda, “Bonds and defects in plasma-deposited silicon nitride using SiH4-NH3-Ar mixture”, Jpn. J. Appl. Phys. 25, 1300 (1986).
[45] D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, “Electron-spin-resonance study of defects in plasma-enhanced chemical vapor deposited silicon nitride”, Appl. Phys. Lett. 52, 445 (1988).
[46] W. Y. Wang.,“Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector”,Master thesis, National Tsing Hua University (2013).
[47] T. L. Lo, “Evaluation of silicon nitride (SiNx)/silicon oxynitride (SiOxNy) stacks for mirror coating of laser interferometer gravitational wave detectors”, National Tsing Hua University (2022).
[48] Wu, Jiansheng, and C. Yu Clare. "How stress can reduce dissipation in glasses." Physical Review B 84.17, 174109 (2011)
[49] C. Cheng, Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings, Master thesis, National Tsing Hua University (2015)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *