帳號:guest(3.144.103.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱錩
作者(外文):Chen, Yu-Chang
論文名稱(中文):利用多點協作技術改善在毫米波光纖無線整合前傳系統中索引調變於非正交多重接取造成的應用限制
論文名稱(外文):Broadening NOMA-IM applications in MMW-RoF mobile fronthaul system by using coordinated multi-point technique with SFBC/STBC
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):葉建宏
顏志恆
口試委員(外文):Yeh, Chien-Hung
Yan, Jhih-Heng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:109066501
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:85
中文關鍵詞:正交分頻多工多點協作技術索引調變非正交多重接取
外文關鍵詞:OFDMCoordinated Multiple PointIndex ModulationNOMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:471
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了因應行動通訊網路快速成長頻譜需求量越來越多,頻譜相對充裕的毫米波(Millimeter Wave, MMW) 波段成了5G行動通訊最重要的一環。但由於毫米波之物理特性導致其傳輸距離縮短,所以5G通訊需佈建大量的小型基地台(small cell)。並且相較於傳統的正交多重接取,如:分頻多工接取(FDMA)、分時多工接取(TDMA)、…等,非正交多重接取(NOMA) 能提供更高的頻譜效率,因此被認為是一個具有前景的技術。
在NOMA系統中,用戶會依其距離基地台之距離分為近端用戶及遠端用戶,近端用戶接收到之訊號功率較高,反之因毫米波高損耗的特性遠端用戶接收到之訊號功率會隨距離快速降低。因此在NOMA的近端用戶中引入索引調變(Index Modulation, IM) 可以有效的提供系統中的遠端用戶之訊號品質。但因為IM的調變特性會使得系統在大幅幫助遠端用戶時,造成近端用戶的頻譜效率降低,因此限縮了NOMA-IM的使用情景。
在本篇論文中,提出以CoMP技術在系統中提供遠端用戶額外的幫助,使整體系統可以有更多選擇,依據近端用戶與遠端用戶對於訊號品質的需求彈性的調整訊號的處理,讓整個系統中的每個用戶皆可以得到正確的通訊服務。加入CoMP技術後,系統又可以依遠端用戶的接收天線數目分為:MISO、MIMO兩種系統,論文中亦對兩系統進行使用情景的分析,並且提出以不同的訊號預處理的方式,讓系統可以運用於更加廣泛的通訊環境,甚至在特定的情況下可以利用CoMP技術大幅降低系統中遠端用戶的接收訊號錯誤率。
To satisfy the massive requirement of the spectrum in nowadays mobile communication network. The millimeter wave (MMW) become an important wavelength band because of its huge available spectrum. But the MMW will cause lots of path loss when transmitting in the wireless channel. So, the base station in the 5G scenario will become dense deployed by small cell. And compare to the conventional orthogonal multiple access (OMA) like: frequency-division orthogonal multiple access (FDMA), time-division orthogonal multiple access (TDMA), and so on. The non-orthogonal multiple access (NOMA) system can provide more spectral efficiency and has been considered as a promising technique.
In the NOMA system, the user will be separated into near user and far user by the distance between the base station and user. The near user can get the higher received power which can demodulate the signal easily. But the far user will get the lower received power which cause by the high path loss of MMW. So, to avoid the disconnect situation happened at the far user receiver. The index modulation (IM) can be used to modulated the near user signal. By using IM, the far user received signal quality can be enhanced efficiently. But the near user spectral efficiency will decay rapidly when the far user needs even more support. That will limit the using scenario of the NOMA-IM.
In this paper, we proposed using coordinated multiple-point (CoMP) technique to relax the using limit in this system. In NOMA-IM-CoMP, there are several different digital signal process methods can be selected. The central unit can change these methods flexible to satisfy the communication requirement of near user and far user. The NOMA-IM-CoMP system can be classified into MISO and MIMO by the received antennas number. In this paper, both of two different situations will be discussed. And will provide numbers of different signal pre-processing to corresponding communication states. Make this system be applicable to many different communication environments. In some specific situation, the bit error rate (BER) can get a large improvement because of the characteristics of the CoMP technique.
中文摘要 I
Abstract II
致謝 III
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 4
第2章 正交分頻多工與元件原理 5
2.1 正交分頻多工 5
2.2 馬赫詹德調變器 9
2.3 光學耦合器 12
2.4 光學波長間隔器 13
2.5 光檢測器與光學OFDM系統的直接接收機制 16
第3章 非正交多重存取技術 19
3.1 非正交多重存取技術原理 19
3.2 連續消除干擾 23
第4章 索引調變 26
4.1 索引調變原理 26
4.2 索引調變訊號的產生與接收 28
4.3 索引調變整合非正交多重存取 32
4.4 頻譜使用效率分析 35
第5章 多點協作與多天線系統 36
5.1 多點協作基本概念 36
5.2 多天線通訊系統 42
5.3 STBC與SFBC編碼 44
5.4 OFDM-CoMP系統 50
5.5 NOMA-IM-CoMP系統 52
第6章 實驗設置與結果 55
6.1 光纖整合無線網路 55
6.2 實驗架構與參數 57
6.3 實驗結果 60
第7章 結論 83
參考文獻 84
[1] ETSI, Why do we need 5G? Retrieved from: https://www.etsi.org/technologies/5G.
[2] Sean Hsu, 什麼是C-RAN? 探討從D-RAN到C-RAN的演進, Retrieved from: https://www.ufispace.com/tw/company/blog/what-is-cran-the-evolution-from-dran-to-cran.
[3] T. Differences. (2018). Difference between FDM and OFDM. Retrieved from: https://techdifferences.com/difference-between-fdm-and-ofdm.html.
[4] Arthur James Lowery, “Amplified-Spontaneous Noise Limit of Optical OFDM Lightwave Systems,” Opt. Express, vol. 16, 2008.
[5] M. Vaezi, Z. Ding, and H. V. Poor, “Multiple Access Techniques for 5G Wireless
Networks and Beyond,” Springer Nature, 2019.
[6] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao and H. Haas, “Index Modulation Techniques for Next-Generation Wireless Networks,” IEEE Communications Magazine, vol. 54, July, 2016.
[7] J. Zyren and W. McCoy, “Overview of the 3GPP Long Term Evolution Physical Layer,” Online available, July 2007.
[8] E. Basar, “Index Modulation Techniques for 5G Wireless Networks,” IEEE Communications Magazine, vol. 54, July 2016.
[9] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao and H. Haas, “Index Modulation Techniques for Next-Generation Wireless Networks,” IEEE Access, vol. 5, August 2017.
[10] E. Basar, U. Aygolu, E. Panayirci, H. V. Poor, “Orthogonal Frequency Division Multiplexing With Index Modulation,” IEEE Transactions on Signal Processing, vol. 61, August 2013.
[11] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa and M. Tanno, “Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO],” IEEE Wireless Communications, vol. 17, June 2010.
[12] Coordinated Multi-Point Operation for LTE Physical Layer Aspects, 3GPP TR36.819, December 2011.
[13] L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, G. K. Chang, “Coordinated Multipoint Transmissions in Millimeter-Wave Radio-Over-Fiber Systems,” Journal of Lightwave Technology, vol. 34, January 2016.
[14] J. G. Proakis and M. Salehi, “Optimum Receivers for AWGN Channels,” Digital Communications, vol. 5, 2008.
[15] B. S. Everitt, The Cambridge Dictionary of Statistics in Medical Sciences. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[16] E. Notes(2019), MIMO Formats-SISO, SIMO, MISO, MU-MIMO, https://www.electronics-notes.com/articles/antennas-propagation/mimo/siso-simo-miso-mimo.php.
[17] S. M. Alamouti, “A Simple Transmit Diversity Techniques for Wireless Communications,” IEEE Journal on Selected Areas in Communications, vol. 16, October 1998.
[18] K. F. Lee and D. B. Williams, “A Space-Frequency Transmitter Diversity Technique for OFDM Systems,” Globecom ’00 – IEEE. Global Telecommunications Conference, vol. 3, December 2000.
[19] C. Lim, Y. Yang and A. Nirmalathas, “Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency,” Photonics, vol. 1, April 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *