帳號:guest(3.144.102.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭冠復
作者(外文):Peng, Kuan-Fu
論文名稱(中文):擋拆進攻影片之嵌入式視覺化
論文名稱(外文):TacticEyes: Embedded Data Visualization on Pick and Roll Offensive Videos
指導教授(中文):胡敏君
指導教授(外文):Hu, Min-Chun
口試委員(中文):朱宏國
姚智原
潘則佑
口試委員(外文):Chu, Hung-Kuo
Yao, Chih-Yuan
Pan, Tse-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:109065707
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:46
中文關鍵詞:嵌入式視覺化比賽觀看系統籃球戰術
外文關鍵詞:Embedded Data VisualizationGame Viewing SystemBasketball Tactics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
運動分析在各種體育賽事中扮演著重要角色,例如籃球。專家們提出了 多種數據指標, 如 John Hollinger 的 PER 和 Dean Oliver 的 Defense Rating, 來評估球員表現。然而,這些數據指標有時無法反映真實的進攻或防守情 況,因為球隊的策略可能影響結果。最近,隨著電腦視覺和感測器技術的 發展,運動數據變得更多樣化,並包括球員的移動軌跡等細節信息。

本研究旨在提供嵌入式視覺化方法, 以幫助球員理解籃球進攻戰術中 的” 擋拆”。我們觀察了教練和球員分析影片的工作流程,並根據深度訪談 的結果, 設計了能夠在影片中呈現的數據內容和視覺化方法。 通過實驗, 我們評估了這些嵌入式視覺化方法對球員理解” 擋拆” 戰術的影響。

總結,本研究貢獻包括:1. 探討以教練和球員為出發點的嵌入式視覺化 方法如何提升對” 擋拆” 戰術的理解,2. 提出針對” 擋拆” 片段的嵌入式視 覺化方法設計框架,3. 提供一個可彈性應用的比賽觀看系統”TacticEyes”。 希望本研究能鼓勵更多探討嵌入式視覺化方法在運動影片分析中的應用。
Sports analysis plays a crucial role in various sports, including basketball. Experts have proposed various data metrics such as John Hollinger’s PER and Dean Oliver’s Defense Rating to assess player performance. However, these data metrics sometimes fail to reflect the actual offensive or defensive situations as team strategies can influence the outcomes. Recently, with the advancement of computer vision and sensor technologies, sports data has become more diverse, including detailed information such as player movement trajectories.

This study aims to provide embedded data visualization methods to help players understand the ”pick and roll” basketball offensive tactic. We observed the workflow of coaches and players analyzing videos and based on in-depth interviews, designed data content and visualization methods that can be presented in videos. Through experiments, we assessed the impact of these embedded data visualization methods on players’ understanding of the ”pick and roll” tactic.

In summary, this study contributes to: 1. Exploring how coach and playercentered embedded data visualization methods enhance the understanding of the ”pick and roll” tactic, 2. Proposing a framework for embedded data visualization methods specific to ”pick and roll” segments, 3. Providing a flexible application for the game viewing system ”TacticEyes.” We hope this research encourages further exploration of embedded data visualization methods in sports video analysis.
摘要 i

Abstract ii

1 前言 1

2 文獻回顧 5

2.1 籃球領域之運動分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 針對運動分析之數據視覺化 . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 運動影片之嵌入式視覺化方法 . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 比賽觀看系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 研究方法 11

3.1 研究過程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 TacticEyes 比賽觀看系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 模擬器使用之數據類型 . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 擋拆進攻影片之嵌入式視覺化方法設計 . . . . . . . . . . . . . . . 14

3.3 參與者總覽 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 實驗設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 正式實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 數據收集與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Pre-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.3 正式實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.4 數據分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 實驗結果與討論 27

4.1 視覺化方法及 TacticEyes 定量分析結果 . . . . . . . . . . . . . . . . . . . . 27

4.1.1 參與者認為各項視覺化元素為易理解且實用的 . . . . . . . . . . . 27

4.1.2 參與者認為 TacticEyes 比賽觀看系統體驗是實用且有趣的 . . . . . 29

4.2 視覺化元素對使用者理解擋拆戰術的影響 . . . . . . . . . . . . . . . . . . 30

4.2.1 參與者使用「球員進攻能力」或「球員進攻傾向」視覺化元素, 了解隊上球員的基本特性,以此提出擋拆進攻戰略上的想法。 . . 30

4.2.2 參與者使用「掩護後進攻空間」視覺化元素,了解決策時可能會 遭遇的危險,以及可能適合出手的時機。 . . . . . . . . . . . . . . 31

iii 4.2.3 參與者使用「傳球分佈與成功率」的視覺化元素,因應對手防守 策略或站位, 了解球員可能適合傳球的選擇以及球員的傳球能 力。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 TacticEyes 對於參與者提升理解擋拆進攻戰術的影響 . . . . . . . . . . . . 32

4.3.1 參與者於不同影片中使用多種嵌入式視覺化元素組合 . . . . . . . 32

4.3.2 參與者使用視覺化元素的策略 . . . . . . . . . . . . . . . . . . . . . 33

4.4 針對影片分析之比賽觀看系統的設計啟示 . . . . . . . . . . . . . . . . . . 35

4.4.1 視覺化方法的設計彈性對觀看體驗的重要性 . . . . . . . . . . . . . 35

4.4.2 透過適應性數據時機提升觀看體驗 . . . . . . . . . . . . . . . . . . 37

4.4.3 視覺化方法的設計仍有待探索 . . . . . . . . . . . . . . . . . . . . . 37

4.4.4 比賽觀看系統應具備多重視角,以便視覺化方法的呈現 . . . . . . 37

5 結論與未來研究方向 41

References 43
[1] Lu Bai, Christos Efstratiou, and Chee Siang Ang. wesport: Utilising wrist-band sensing to detect player activities in basketball games. In 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pages 1–6. IEEE, 2016.

[2] Andrew Borrie, Gudberg K Jonsson, and Magnus S Magnusson. Temporal pattern analysis and its applicability in sport: an explanation and exemplar data. Journal of sports sciences, 20(10):845–852, 2002.

[3] Virginia Braun and Victoria Clarke. Thematic analysis. American Psychological Association, 2012.

[4] Dan Cervone, Alexander D'Amour, Luke Bornn, and Kirk Goldsberry. Pointwise: Predicting points and valuing decisions in real time with nba optical tracking data. In Proceedings of the 8th MIT Sloan Sports Analytics Conference, Boston, MA, USA, volume 28, page 3, 2014.

[5] Wei Chen, Tianyi Lao, Jing Xia, Xinxin Huang, Biao Zhu, Wanqi Hu, and Huihua Guan.

Gameflow: narrative visualization of nba basketball games. IEEE Transactions on Multimedia, 18(11):2247–2256, 2016.

[6] Zhutian Chen, Qisen Yang, Jiarui Shan, Tica Lin, Johanna Beyer, Haijun Xia, and Hanspeter Pfister. iball: Augmenting basketball videos with gaze-moderated embedded visualizations. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–18, 2023.

[7] C DIETRICH, D KOOP, and SILVA CT VO HT. Baseball4d: A tool for baseball game reconstruction amp; visualization. In 2014 IEEE Conference on Visual Analytics Science and Technology (VAST)(Oct. 2014), pages 23–32.

[8] Alexander Franks, Andrew Miller, Luke Bornn, and Kirk Goldsberry. Counterpoints:

Advanced defensive metrics for nba basketball. In 9th annual MIT sloan sports analytics conference, Boston, MA, volume 10, 2015.

[9] Tsung-Sheng Fu, Hua-Tsung Chen, Chien-Li Chou, Wen-Jiin Tsai, and Suh-Yin Lee.

Screen-strategy analysis in broadcast basketball video using player tracking. In 2011 Visual Communications and Image Processing (VCIP), pages 1–4. IEEE, 2011.

[10] Yu Fu and John Stasko. Supporting data-driven basketball journalism through interactive visualization. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pages 1–17, 2022.

[11] Kirk Goldsberry. Courtvision: New visual and spatial analytics for the nba. In 2012 MIT Sloan sports analytics conference, volume 9, pages 12–15, 2012.

[12] John K Haas. A history of the unity game engine. 2014.

[13] Min-Chun Hu, Ming-Hsiu Chang, Ja-Ling Wu, and Lin Chi. Robust camera calibration and player tracking in broadcast basketball video. IEEE Transactions on Multimedia, 13(2):266–279, 2010.

[14] Lars Magnus Hvattum. A comprehensive review of plus-minus ratings for evaluating individual players in team sports. 2019.

[15] BBball Index. Lebron metric in basketball explained, Sep 2021.

[16] Ting-Yang Kao, Tse-Yu Pan, Chen-Ni Chen, Tsung-Hsun Tsai, Hung-Kuo Chu, and MinChun Hu. Scoreactuary: Hoop-centric trajectory-aware network for fine-grained basketball shot analysis. In Proceedings of the 30th ACM International Conference on Multimedia, pages 6991–6993, 2022.

[17] Christos Koutsouridis, Georgios Karamousalidis, and Christos Galazoulas. The efficacy of“high pick and roll"in relation to the defence's reaction and its effect on the result of the game. International Journal of Performance Analysis in Sport, 18(4):554–567, 2018.

[18] Fengbo Li, Chad Stolper, and John Stasko. Nbavis: Exploring 2012-13 nba season data, 2013.

[19] Tica Lin, Zhutian Chen, Yalong Yang, Daniele Chiappalupi, Johanna Beyer, and Hanspeter Pfister. The quest for: Embedded visualization for augmenting basketball game viewing experiences. IEEE transactions on visualization and computer graphics, 29(1):962–971, 2022.

[20] Antonio G Losada, Roberto Therón, and Alejandro Benito. Bkviz: A basketball visual analysis tool. IEEE computer graphics and applications, 36(6):58–68, 2016.

[21] Prabhaker Mishra, Chandra M Pandey, Uttam Singh, Anshul Gupta, Chinmoy Sahu, and Amit Keshri. Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1):67, 2019.

[22] Heather L O’Brien and Elaine G Toms. The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology, 61(1):50–69, 2010.

[23] Dean Oliver. Basketball on paper: rules and tools for performance analysis. U of Nebraska Press, 2011.

[24] Charles Perin, Romain Vuillemot, and Jean-Daniel Fekete. Soccerstories: A kick-off for visual soccer analysis. IEEE transactions on visualization and computer graphics, 19(12):2506–2515, 2013.

[25] Charles Perin, Romain Vuillemot, and Jean-Daniel Fekete. À table! improving temporal navigation in soccer ranking tables. In Proceedings of the SIGCHI conference on human factors in computing systems, pages 887–896, 2014.

[26] Charles Perin, Romain Vuillemot, Charles D Stolper, John T Stasko, Jo Wood, and Sheelagh Carpendale. State of the art of sports data visualization. In Computer Graphics Forum, volume 37, pages 663–686. Wiley Online Library, 2018.

[27] Matej Perše, Matej Kristan, Stanislav Kovačič, Goran Vučkovič, and Janez Perš. A trajectory-based analysis of coordinated team activity in a basketball game. Computer Vision and Image Understanding, 113(5):612–621, 2009.

[28] Dominik Sacha, Feeras Al-Masoudi, Manuel Stein, Tobias Schreck, Daniel A Keim, Gennady Andrienko, and Halldór Janetzko. Dynamic visual abstraction of soccer movement. In Computer Graphics Forum, volume 36, pages 305–315. Wiley Online Library, 2017.

[29] Rodger Sherman and Mark Hinog. These charts show how preposterous steph curry's record-shattering season  ;was, Apr 2016.

[30] Manuel Stein, Thorsten Breitkreutz, Johannes Haussler, Daniel Seebacher, Christoph Niederberger, Tobias Schreck, Michael Grossniklaus, Daniel Keim, and Halldor Janetzko. Revealing the invisible: Visual analytics and explanatory storytelling for advanced team sport analysis. In 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), pages 1–9. IEEE, 2018.

[31] Manuel Stein, Halldor Janetzko, Andreas Lamprecht, Thorsten Breitkreutz, Philipp Zimmermann, Bastian Goldlücke, Tobias Schreck, Gennady Andrienko, Michael Grossniklaus, and Daniel A Keim. Bring it to the pitch: Combining video and movement data to enhance team sport analysis. IEEE transactions on visualization and computer graphics, 24(1):13–22, 2017.

[32] Wan-Lun Tsai, Tse-Yu Pan, and Min-Chun Hu. Feasibility study on virtual reality based basketball tactic training. IEEE Transactions on Visualization and Computer Graphics, 28(8):2970–2982, 2020.

[33] Edward R Tufte. The visual display of quantitative information, volume 2. Graphics press Cheshire, CT, 2001.

[34] Romain Vuillemot and Charles Perin. Sports tournament predictions using direct manipulation. IEEE computer graphics and applications, 36(5):62–71, 2016.

[35] Jiachen Wang, Kejian Zhao, Dazhen Deng, Anqi Cao, Xiao Xie, Zheng Zhou, Hui Zhang, and Yingcai Wu. Tac-simur: Tactic-based simulative visual analytics of table tennis. IEEE transactions on visualization and computer graphics, 26(1):407–417, 2019.

[36] Wikipedia. Defensive rating — Wikipedia, the free encyclopedia. http://en.wikipedia.

org/w/index.php?title=Defensive\%20rating&oldid=1156857841, 2023. [Online; accessed 08-July-2023].

[37] Wikipedia. Player efficiency rating — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Player\%20efficiency\%20rating& oldid=1163689208, 2023. [Online; accessed 08-July-2023].

[38] Krist Wongsuphasawat. A narrative display for sports tournament recap. In 1st Workshop on Sports Data Visualization, IEEE VIS, volume 12, pages 13–14, 2013.

[39] Yihong Wu, Dazhen Deng, Xiao Xie, Moqi He, Jie Xu, Hongzeng Zhang, Hui Zhang, and Yingcai Wu. Obtracker: Visual analytics of off-ball movements in basketball. IEEE Transactions on Visualization and Computer Graphics, 29(1):929–939, 2022.

[40] Qiyu Zhi and Ronald Metoyer. Gamebot: A visualization-augmented chatbot for sports game. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–7, 2020.

[41] Stefanie Zollmann, Tobias Langlotz, Moritz Loos, Wei Hong Lo, and Lewis Baker. Arspectator: Exploring augmented reality for sport events. In SIGGRAPH Asia 2019 Technical Briefs, pages 75–78. 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *