|
Attali, Y., & Burstein, J. (2006). Automated essay scoring with e-rater® v. 2. The Journal of Technology, Learning and Assessment, 4(3). https://ejournals. bc.edu/index.php/jtla/article/view/1650
Bao, J., Wang, Y., Li, Y., Mi, F., & Xu, R. (2022). AEG: Argumentative essay generation via a dual-decoder model with content planning. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 5134–5148. https://aclanthology.org/2022.emnlp-main.343
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150.
Bryant, C., Felice, M., & Briscoe, T. (2017). Automatic annotation and evaluation of error types for grammatical error correction. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 793–805. https://doi.org/10.18653/v1/P17-1074
Carlile, W., Gurrapadi, N., Ke, Z., & Ng, V. (2018). Give me more feedback: Annotating argument persuasiveness and related attributes in student essays. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 621–631. https://doi.org/10. 18653/v1/P18-1058
Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin, 70(4), 213.
Cozma, M., Butnaru, A., & Ionescu, R. T. (2018). Automated essay scoring with string kernels and word embeddings. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 503–509. https://doi.org/10.18653/v1/P18-2080 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423
Dong, F., Zhang, Y., & Yang, J. (2017). Attention-based recurrent convolutional neural network for automatic essay scoring. Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), 153–162. https://doi.org/10.18653/v1/K17-1017
Fitzsimmons, P. R., Michael, B., Hulley, J. L., & Scott, G. O. (2010). A readability assessment of online parkinson’s disease information. The journal of the Royal College of Physicians of Edinburgh, 40(4), 292–296.
Granger, S., Dagneaux, E., Meunier, F., Paquot, M., et al. (2009). International corpus of learner english (Vol. 2). Presses universitaires de Louvain Louvainla- Neuve.
Hussein, M. A., Hassan, H. A., & Nassef, M. (2020). A trait-based deep learning automated essay scoring system with adaptive feedback. International Journal of Advanced Computer Science and Applications, 11(5).
Ke, Z., & Ng, V. (2019). Automated essay scoring: A survey of the state of the art. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, 6300–6308. https://doi.org/10.24963/ijcai.2019/879
Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel (tech.rep.). Naval Technical Training Command Millington TN Research Branch.
Lo, K., Wang, L. L., Neumann, M., Kinney, R., & Weld, D. (2020). S2ORC: The semantic scholar open research corpus. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 4969–4983. https://doi.org/10.18653/v1/2020.acl-main.447
Mathias, S., & Bhattacharyya, P. (2018). ASAP++: Enriching the ASAP automated essay grading dataset with essay attribute scores. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). https://aclanthology.org/L18-1187
Mathias, S., & Bhattacharyya, P. (2020). Can neural networks automatically score essay traits? Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, 85–91. https://doi.org/10.18653/v1/2020.bea-1.8
Miller, G. A., Leacock, C., Tengi, R., & Bunker, R. T. (1993). A semantic concordance. Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993. https://aclanthology.org/H93-1061
Page, E. B. (2003). Project essay grade: Peg. Automated essay scoring: A crossdisciplinary perspective, 43–54.
Persing, I., Davis, A., & Ng, V. (2010). Modeling organization in student essays. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 229–239. https://aclanthology.org/D10-1023
Persing, I., & Ng, V. (2013). Modeling thesis clarity in student essays. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 260–269. https://aclanthology.org/P13-1026
Persing, I., & Ng, V. (2014). Modeling prompt adherence in student essays. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1534–1543. https://doi.org/10.3115/v1/P14-1144
Persing, I., & Ng, V. (2015). Modeling argument strength in student essays. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 543–552. https://doi.org/10.3115/v1/P15-1053
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding by generative pre-training. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485–5551.
Ridley, R., He, L., Dai, X.-y., Huang, S., & Chen, J. (2021). Automated crossprompt scoring of essay traits. Proceedings of the AAAI Conference on Artificial Intelligence, 35(15), 13745–13753. https://doi.org/10.1609/aaai.v35i15.17620
Rothe, S., Mallinson, J., Malmi, E., Krause, S., & Severyn, A. (2021). A simple recipe for multilingual grammatical error correction. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 702–707. https://doi.org/10.18653/v1/2021.aclshort.89
Rudner, L. M., & Liang, T. (2002). Automated essay scoring using bayes’theorem. The Journal of Technology, Learning and Assessment, 1(2). https://ejournals.bc.edu/index.php/jtla/article/view/1668
Shazeer, N., & Stern, M. (2018). Adafactor: Adaptive learning rates with sublinear memory cost. In J. Dy & A. Krause (Eds.), Proceedings of the 35th international conference on machine learning (pp. 4596–4604). PMLR. https://proceedings.mlr.press/v80/shazeer18a.html
Stab, C., & Gurevych, I. (2014). Identifying argumentative discourse structures in persuasive essays. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 46–56. https://doi.org/10.3115/v1/D14-1006
Taghipour, K., & Ng, H. T. (2016). A neural approach to automated essay scoring. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 1882–1891. https://doi.org/10.18653/v1/D16-1193
Uto, M., Xie, Y., & Ueno, M. (2020). Neural automated essay scoring incorporating handcrafted features. Proceedings of the 28th International Conference on Computational Linguistics, 6077–6088. https://doi.org/10.18653/v1/2020.coling-main.535
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., … Rush, A. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6
Wu, H.-T. (2022). Gramaconc: A concordancer for grammar patterns and phrases. https://hdl.handle.net/11296/n6dwxc
Yang, P., Li, L., Luo, F., Liu, T., & Sun, X. (2019). Enhancing topic-to-essay generation with external commonsense knowledge. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2002–2012. https://doi.org/10.18653/v1/P19-1193
Yang, R., Cao, J., Wen, Z., Wu, Y., & He, X. (2020). Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking. Findings of the Association for Computational Linguistics: EMNLP 2020, 1560–1569. https://doi.org/10.18653/v1/2020.findings-emnlp.141 |