帳號:guest(3.22.240.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪偉勛
作者(外文):Hung, Wei-Shiun
論文名稱(中文):以漸進式RDL繞線器實現2.5D小晶片封裝系統之偕同最佳化
論文名稱(外文):Chiplet Package Co-Optimization in 2.5D Systems by Progressive RDL Router
指導教授(中文):何宗易
指導教授(外文):Ho, Tsung-Yi
口試委員(中文):陳宏明
李淑敏
口試委員(外文):Chen, Hung-Min
Li, Shu-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:109065527
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:30
中文關鍵詞:小晶片封裝偕同設計網路流重佈線路層2.5D繞線
外文關鍵詞:chipletpackageco-designnetworkRDL2.5Drouting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:363
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
2.5D 系統級封裝 (SiP) 設計架構具有良好的 IP 複用性以及高頻寬密度的異質整合性等方面的特點,因而廣受歡迎;且 SiP 有相對較低設計成本及較短的設計週期,備受業界推崇與青睞。

然而,晶片封裝間隙和引腳間距已來到亞微米等級,封裝的設計對系統效能的影響已不可忽略,且由於系統效能和設計靈活性之間的權衡與取捨,使得異質整合技術開發面臨相當大的困難。在市場需求居高不下的情況,各界必須建立更高端的方法來偕同最佳化小晶片 (chiplet) 系統設計,而非遵循缺乏封裝和小晶片整體視圖的傳統 Die-by-die 設計架構。

在本論文中,我們提出了一種備有重分佈層 (Redistribution Layer, RDL) 繞線器的小晶片封裝偕同設計流程。從封裝和小晶片中一起做時序環境萃取開始,然後是引腳選擇策略和封裝繞線器。這種基於網絡流的繞線器是由網格模型構建的,該模型提供了一種可在一個步驟中,在具有任意數量的小晶片和 RDL 的框架中找到最小化總線長及可控的鑽孔 (Via) 數量的解,從而提高性能改進,而不採用較為啟發式的兩步驟的逃逸繞線及全局繞線演算法。

在實驗中,我們以 2D 架構相對應設計的系統效能 400 MHz 與 Die-by-die 設計法的系統效能 349 MHz 的差作為 100% 的基準,即我們的最大可能改善空間。最終舊的設計流程的系統性能差僅能達到 26% ;而新的設計流程可將系統性能差可以進一步縮小到僅僅 2% ,幾乎等同於 2D 設計的系統效能。
2.5 D System-in-Package (SiP) design has gained much popularity for its features in IP reuse, heterogeneous integration with high bandwidth density, etc. The industry has benefited from lower design costs and shorter design cycles with SiP. While the chip-package gap and pin pitch are shrinking down to sub-micron scale, package design became tremendously significant to the system performance.

However, heterogeneous integration faces difficulties due to challenges in balancing performance and design flexibility. It is urged to establish more sophisticated approaches to co-optimize the package and chiplet designs rather than following the conventional die-by-die approach which lacks the holistic view of package and chiplets.

In this thesis, a chiplet-package co-design flow with an embedded network-flow based redistribution layer (RDL) router is proposed. It starts from the timing context extraction together from the package and chiplets and is followed by a pin selection strategy and a package router. This network-flow based router is constructed by a grid model which provides an approach for finding a routing solution in global routing stage with an objective of minimizing total wirelength and controllable via usage and thus could favor performance improvement, instead of doing a two-step escape-and-global routing.

Through experiments, the new design flow shows that the system performance gap can be closed to 2% while an old design flow can achieve only 26%, by taking the performance difference of a 2D counterpart to a die-by-die design as the baseline.
Abstract (Mandarin) I
Abstract II
Acknowledgements III
Contents IV
List of Figures VI
List of Tables VIII

1 Introduction 1

2 Preliminaries and Problem Formulation 5
2.1 Problem Formulation . . . 5
2.2 Routing Algorithm Overview . . . 6
2.3 Minimum-Cost Maximum-Flow Algorithm . . . 7
2.4 Wire Timing Budget . . . 8

3 Methodology 9
3.1 Pin Assignment . . . 10
3.2 Grid Model . . . 11
3.3 Multi-pin Net . . . 13
3.4 Signal Assignment . . . 13
3.5 Compaction Method . . . 15

4 Experimental Case Study 18
4.1 Experimental Case Study . . . 18
4.2 System Architecture and Technology Settings . . . 18
4.3 Design Cases . . . 19
4.3.1 Case-1: Reference 2D Design . . . 19
4.3.2 Case-2: Context-Free 2.5D Design . . . 21
4.3.3 Case-3: Context-Aware Optimized 2.5D Designs . . . 21

5 Experimental Results 23
5.1 Maximum Frequency . . . 24
5.2 System Power and Wirelength . . . 26
6 Conclusions 28
Bibliography 29
[1] W. Chen and B. Bottoms, “Heterogeneous integration roadmap: Driving force and enabling technology for systems of the future,” in Proc. of the Symposium on VLSI Technology, pp. T50–T51, 2019.
[2] J.-W. Fang, M. D. F. Wong, and Y.-W. Chang, “Flip-chip routing with unified area i/o pad assignments for package-board co-design,” in Proc. of ACM/IEEE DAC, pp. 336–339, 2009.
[3] B.-Q. Lin, T.-C. Lin, and Y.-W. Chang, “Redistribution layer routing for integrated fan-out wafer-level chip-scale packages,” in Proc. of IEEE/ACM ICCAD, pp. 1–8, 2016.
[4] C.-H. Chiang, F.-Y. Chuang, and Y.-W. Chang, “Unified redistribution layer routing for 2.5d ic packages,” in Proc. of IEEE/ACM ASP-DAC, pp. 331–337, 2020.
[5] J.-W. Fang, K.-H. Ho, and Y.-W. Chang, “Routing for chip-package-board co-design considering differential pairs,” in Proc. of IEEE/ACM ICCAD, pp. 512–517, 2008.
[6] M.-Y. Huang, H.-M. Chen, K.-N. Chen, S.-H.Wu, Y.-M. Lee, and A.-Y. Su, “A design flow for micro bump and stripe planning on modern chip-package co-design,” in ECTC, pp. 2236–2241, 2020.
[7] J. Kim, G. Murali, H. Park, E. Qin, H. Kwon, V. C. K. Chekuri, N. M. Rahman, N. Dasari, A. Singh, M. Lee, et al., “Architecture, chip, and package codesign flow for interposer-based 2.5-d chiplet integration enabling heterogeneous ip reuse,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 2424–2437, 2020.
[8] M. A. Kabir and Y. Peng, “Holistic chiplet–package co-optimization for agile custom 2.5-d design,” IEEE TCPMT, vol. 11, no. 5, pp. 715–726, 2021.
[9] Q. Ma, H. Zhang, and M. Wong, “Triple patterning aware routing and its comparison with double patterning aware routing in 14nm technology,” in Proc. of
ACM/IEEE DAC, pp. 591–596, 2012.
[10] C.-F. Tseng, C.-S. Liu, C.-H. Wu, and D. Yu, “Info (wafer level integrated fan-out) technology,” in Proc. of IEEE ECTC, pp. 1–6, 2016.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *