帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):董紀壯
作者(外文):Dong, Ji-Zhuang.
論文名稱(中文):在相關衰減通道下最大化可重構智慧表面輔助之多用戶系統傳輸速率總和
論文名稱(外文):Sum Rate Maximization for RIS-Aided Multiuser System over Correlated Fading Channel
指導教授(中文):劉光浩
指導教授(外文):Liu, Kuang-Hao
口試委員(中文):王志宇
翁詠祿
口試委員(外文):Wang, Chih-Yu
Ueng, Yeong-Luh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064547
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:35
中文關鍵詞:交替式最佳化相關性衰減多輸入單輸出可重構智慧表 面兩階段波束成型
外文關鍵詞:Alternating optimizationcorrelated fadingMISORIStwo-stage beamforming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:733
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
可重構智慧表面(RIS)的突出特點激發了RIS 輔助通道的許多研究興
趣。本論文的目標是通過設計發射器的波束成型向量和RIS 元素的相位位
移,使RIS 輔助的多用戶多輸入單輸出(MISO)系統的傳輸速率總和最大
化。由於發射器和RIS 之間的通道是由多個用戶共享的,不同用戶經歷的
通道衰減時常是相關的,這嚴重惡化了總速率的性能。為了解決這個問題,
發射器採用了兩階段波束成型(TSB),其中包含一個內部預編器和一個外
部預編器,用於處理相關衰減引起的多用戶干擾。接著,固定發射波束成
型向量,RIS 元素的相位位移使用黎曼共軛梯度(RCG)演算法進行優化。
最後,發射波束成型向量和RIS 相位位移在交替式最佳化(AO)的基礎上
被聯合優化。通過模擬結果評估了所提出的聯合式發射波束成型和RIS 相
位位移設計演算法的傳輸速率總和性能。
The salient features of reconfigurable intelligent surface (RIS) stimulate much
research interests in RIS-aided communications. Our goal in this thesis is to maximize
the sum rate of the RIS-aided multiuser multi-input single-output (MISO)
system by designing the beamforming vector at the transmitter and the phase shift
of RIS elements. Since the channel between the transmitter and the RIS is shared
by multiple users, the channel fading experienced by different users tends to be
correlated that severely deteriorates the sum rate performance. To tackle this issue,
the transmitter applies the two-stage beamforming (TSB) containing an inner and
an outer precoders for handling the multi-user interference due to correlated fading.
Then phase shifts of RIS elements, for a fixed transmit beamforming vector are optimized
using the Riemannian Conjugate Gradient (RCG) algorithm. Finally, the
transmit beamforming vector and the RIS phase shifts are jointly optimized based
on the alternating algorithm (AO). The sum rate performance of the proposed joint
transmit beamforming and RIS phase shift design algorithm is evaluated through
simulations.
摘要i
Abstract ii
誌謝iii
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 System Model and Problem Formulation 4
2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Uncorrelated Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Correlated Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Proposed Method 14
3.1 Two-stage Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Outer Precoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Inner Precoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Phase Optimization for RIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Alternating Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Simulations Results and Discussion 23
4.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Conclusion 32
References 33
[1] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via
joint active and passive beamforming,” IEEE Transactions on Wireless Communications,
vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
[2] H. Guo, Y. C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable
intelligent surface aided wireless networks,” IEEE Transactions on Wireless
Communications, vol. 19, no. 5, pp. 3064–3076, May 2020.
[3] Q. U. A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M. S. Alouini,
“Intelligent reflecting surface-assisted multi-user miso communication: Channel estimation
and beamforming design,” IEEE Open Journal of the Communications Society, vol. 1,
pp. 661–680, 2020.
[4] Y. Sun, S. Lv, S. Liu, and Y. H. Zhang, “Joint user scheduling and power allocation for
massive mimo downlink with two-stage precoding,” Proc. IEEE International Conference
on Computer and Communications (ICCC), pp. 2917–2921, 2016.
[5] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable
intelligent surfaces for energy efficiency in wireless communication,” IEEE Transactions
on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
[6] Y. Hussein, M. Assaad, and T. Clessienne, “Reconfigurable intelligent surfaces-aided joint
spatial division and multiplexing for mu-mimo systems,” Proc. IEEE International Conference
on Communications, pp. 2658–2663, 2022.
[7] Y. Jeon, C. Song, S. R. Lee, S. Maeng, J. Jung, and I. Lee, “New beamforming designs
for joint spatial division and multiplexing in large-scale miso multi-user systems,” IEEE
Transactions on Wireless Communications, vol. 16, no. 5, pp. 3029–3041, May 2017.
[8] Y. Jeon, C. Song, S. Maeng, M. Park, and I. Lee, “Mmse based two-stage beamforming for
large-scale multi-user miso systems,” Proc. IEEE 27th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, 2016.
[9] Q. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, “An iteratively weighted mmse approach
to distributed sum-utility maximization for a mimo interfering broadcast channel,” IEEE
Transactions on Signal Processing, vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
[10] J. Nam, A. Adhikary, J. Y. Ahn, and G. Caire, “Joint spatial division and multiplexing:
Opportunistic beamforming, user grouping and simplified downlink scheduling,” IEEE
Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 876–890, Oct. 2014.
[11] A. Adhikary, J. Nam, J. Y. Ahn, and G. Caire, “Joint spatial division and multiplexing—
the large-scale array regime,” IEEE Transactions on Information Theory, vol. 59, no. 10,
pp. 6441–6463, Oct. 2013.
[12] H. Xie, F. Gao, S. Zhang, and S. Jin, “A unified transmission strategy for tdd/fdd massive
mimo systems with spatial basis expansion model,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 4, pp. 3170–3184, Apr. 2017.
[13] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM WIRELESS COMMUNICATIONS
WITH MATLAB. John Wiley & Sons, 2010.
[14] Q. U. A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M. S. Alouini, “Asymptotic
max-min sinr analysis of reconfigurable intelligent surface assisted miso systems,” IEEE
Transactions on Wireless Communications, vol. 19, no. 12, pp. 7748–7764, Dec. 2020.
[15] Q. U. A. Nadeem, A. Kammoun, M. Debbah, and M. S. Alouini, “A generalized spatial
correlation model for 3d mimo channels based on the fourier coefficients of power spectrums,”
IEEE Transactions on Signal Processing, vol. 63, no. 14, pp. 3671–3686, Jul.
2015.
[16] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a matlab toolbox for
optimization on manifolds,” The Journal of Machine Learning Research, vol. 15, no. 1,
p. 1455–1459, Jan. 2014.
[17] X. Yu, J. C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for
hybrid precoding in millimeter wave mimo systems,” IEEE Journal of Selected Topics in
Signal Processing, vol. 10, no. 3, pp. 485–500, Apr. 2016.
[18] X. Yu, D. Xu, and R. Schober, “Miso wireless communication systems via intelligent
reflecting surfaces : (invited paper),” Proc. IEEE/CIC International Conference on Communications
in China (ICCC), pp. 735–740, 2019.
[19] J. Hu, W. Zhang, H. Zhu, K. Zhong, W. Xiong, Z. Wei, and Y. Li, “Constant modulus
waveform design for mimo radar via manifold optimization,” Signal Processing, 190,
108322, 2022.
[20] Y. Liu, X. Mu, X. Liu, M. D. Renzo, Z. Ding, and R. Schober, “Reconfigurable intelligent
surface-aided multi-user networks: Interplay between noma and ris,” IEEE Wireless
Communications, vol. 29, no. 2, pp. 169–176, Apr. 2022.
[21] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink
spatial multiplexing in multiuser mimo channels,” IEEE Transactions on Signal Processing,
vol. 52, no. 2, pp. 461–471, Feb. 2004.
[22] H. Zhang, S. Ma, Z. Shi, X. Zhao, and G. Yang, “Sum-rate maximization of ris-aided
multi-user mimo systems with statistical csi,” eprint arXiv:2112.11936, Dec. 2021.
(此全文20280108後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *