帳號:guest(3.148.112.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴敬霖
作者(外文):Lai, Jing-Lin
論文名稱(中文):透過利用空頻編碼索引調變增進非正交多重存取於5G毫米波下傳系統之效能
論文名稱(外文):Performance enhancement by using Space-Frequency Coded Index Modulation on 5G MMW NOMA Downlink System
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):顏志恆
彭朋群
口試委員(外文):Yan, Jhih-Heng
Peng, Peng-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064546
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:非正交多重存取索引調變空頻編碼索引頻譜效益正交分頻多工
外文關鍵詞:NOMAIndex-ModulationSpace-Frequency Coded Index ModulationSpectral-EfficiencyOFDM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:460
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
眾所皆知,隨著5G行動網路的快速發展,甚至是未來面對的6G的發展,推動了數據流量的迅速增長。頻譜效率成為了處理爆炸性數據流量的重要挑戰之一。同時,近幾年來,非正交多重存取 (NOMA) 被認為是一個具有前景的技術並且可能會被下一代的多重存取技術採用,但是在 NOMA 中為了區分不同的用戶,用戶之間必須維持著特定的功率比,這個條件可能在某些通道條件下難以達到,所以此時,透過索引調變(Index-modulation, IM)技術加以整合NOMA的方法 (NOMA-IM),可以提供更多具有彈性的功率比,並加入 multiple-input multiple-output(MIMO)技術,相較於單天線的NOMA(SISO NOMA),MIMO NOMA可藉由多天線數來增加傳輸的數據量或是藉由傳輸訊號的多樣性(Diversity)來降低錯誤率。
在本篇論文中,兩種新穎的 NOMA-MIMO-SFCIM 系統方案在毫米波多用戶無線電存取系統中進行實驗展示,並在接收端中使用連續干擾消除法(SIC)用於區分不同用戶,實驗與模擬結果顯示了在以適合功率域多工的功率比範圍而言, 其中一種 NOMA-MIMO-SFCIM 方案可以比傳統的單天線 NOMA 增加頻譜效益及降低錯誤率,並於功率域做疊加更多用戶以增加每個用戶的傳輸資料量時,可以更小的功率進行疊加,另一種方案則是與NOMA-MIMO使用SFBC code(Space Frequency Block Code)在錯誤率相差不大的情況下相比,也能夠增加頻譜效益的目的。 此外,SFC-IM 因為其技術的特性還可以彌補傳統的子載波OFDM-IM 因為索引的關係而降低頻譜效益的問題,在應用於 NOMA 系統上相比於 NOMA-IM,不僅沒有犧牲掉任何頻譜,反而額外提升了頻譜效率。
It is well known that with the rapid development of the 5G network and even 6G in the future, it has promoted the rapid growth of data traffic. The spectrum efficiency has become one of the important challenges to handle such explosive data traffic. In recent years, non-orthogonal multiple access (NOMA) has been treated as a promising technology and may be adopted by multiple access technology in next generation. However, to differentiate different users by maintaining a specific power ratio may be difficult to achieve under certain channel conditions. So, the NOMA-IM of integrating NOMA with index modulation (IM) technology and Multiple-Input Multiple-Output (MIMO) can provide flexibility in power ratio. Compared with the NOMA (SISO), NOMA MIMO can increase the amount of data transmitted by multiple antennas or reduce the bit error rate (BER) through signaling diversity.
In this paper, two new NOMA-MIMO-SFCIM cases are demonstrated in a multi-users millimeter wave radio access system, and successive interference cancellation (SIC) is used to separate different users in receivers. Experiments and simulation results show that in terms of appropriate power ratio range for power domain multiple access, one of the scenarios(sec. 4.2) here provides smaller power ratio and enhance spectral efficiency than conventional NOMA, and the other one(sec. 4.3) can enhance spectral efficiency though BER performance is slightly worse than NOMA-SFBC. In addition, due to SFC-IM characters, it can compensate the reduced spectrum efficiency resulting from the traditional OFDM-IM. In NOMA-SFCIM application, compared with NOMA-IM, it does not reduce any spectrum, but increase the spectrum efficiency.
摘要 ii
Abstract iii
致謝 iv
圖目錄 v
表目錄 viii
第 1 章 緒論 1
1.1 前言 1
1.2 研究目的與動機 5
1.3 論文架構 7
第 2 章 訊號系統介紹與原理 8
2.1 正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM) 8
2.2 非正交多重存取(Non-Orthogonal Multiple Access, NOMA) 13
2.2.1 疊加編碼與連續干擾消除 16
2.2.2 上行鏈路(Uplink) 19
2.2.3 下行鏈路(Downlink) 22
2.3 空頻編碼索引調變(Space-Frequency Coded Index Modulation) 25
2.3-1 OFDM-IM技術(OFDM with index modulation) 25
2.3-2 SFC-IM訊號產生與接收 29
2.3-3 Linear-Complexity ML 接收器 31
2.3-4 SFC-IM 角度參數的優化 36
2.3-5頻譜使用效益與位元錯誤率表現 37
第 3 章 空頻編碼索引調變整合非正交多重存取 41
3.1 SFBC Encoder 41
3.2 SFBC MIMO Decoder 43
3.3 所提出的NOMA-SFCIM應用 45
3.3-1 FU:SFBC, NU:SFC-IM 46
3.3-2 FU:SFC-IM, NU:OFDM 51
第 4 章 模擬與實驗設置及結果 55
4.1 實驗設置與參數 56
4.2 FU:SFBC, NU:SFC-IM 模擬與實驗結果 58
4.3 FU:SFC-IM, NU:OFDM 模擬與實驗結果 66
第 5 章 結論 73
參考文獻 74

[1] 蘇俊吉(2015)。科學發展513期。58~63頁。
[2] M. Shafi et al., "5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221, June 2017.
[3] B. Anass, "IMT-2020 Radio Interface Standardization Trends in ITU-R", NTT DOCOMO Technical Journal., vol. 19, no. 3, pp. 55-63, Jan. 2018.”
[4] Cheon, J.; Cho, H.-S. Power Allocation Scheme for Non-Orthogonal Multiple Access in Underwater Acoustic Communications. Sensors 2017, 17,
[5] Y. Tian, K. Lee, C. Lim and A. Nirmalathas, "Demonstration of Non-Orthogonal Multiple Access Scheme using Multilevel Coding without Successive Interference Cancellation with 60 GHz Radio-over-Fiber Fronthaul," 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, 2018, pp. 1-3.
[6] C. Lim, Y. Tian, A. Nirmalathas and K. Lee, "Advanced Techniques for 60 GHz Fronthaul Links," 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2019, pp. 1-3.
[7] L. Wang, Z. Chen, Z. Gong and M. Wu, "Space-Frequency Coded Index Modulation With Linear-Complexity Maximum Likelihood Receiver in the MIMO-OFDM System," in IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1439-1443, Oct. 2016.
[8] Javier Campos, "Understanding the 5G NR Physical Layer", Keysight Technologies release, November 2017.
[9] Y. Chen et al., "Toward the Standardization of Non-Orthogonal Multiple Access for Next Generation Wireless Networks," in IEEE Communications Magazine, vol. 56, no. 3, pp. 19-27, March 2018, doi: 10.1109/MCOM.2018.1700845
[10] S. M. R. Islam, N. Avazov, O. A. Dobre and K. -s. Kwak, "Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges," in IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, Secondquarter 2017
[11] R. Hoshyar, F. P. Wathan and R. Tafazolli, "Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel," in IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1616-1626, April 2008,doi: 10.1109/TSP.2007.909320.
[12] M. Al-Imari, P. Xiao, M. A. Imran and R. Tafazolli, "Uplink non-orthogonal multiple access for 5G wireless networks," 2014 11th International Symposium on Wireless Communications Systems (ISWCS), 2014
[13] H. Nikopour et al., "SCMA for downlink multiple access of 5G wireless networks," 2014 IEEE Global Communications Conference, 2014, pp. 3940-3945, doi: 10.1109/GLOCOM.2014.7037423.
[14] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun and K. Niu, "Pattern Division Multiple Access—A Novel Nonorthogonal Multiple Access for Fifth-Generation Radio Networks," in IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3185-3196, April 2017, doi: 10.1109/TVT.2016.2596438.
[15] J. Zhang, S. Chen, X. Mu and L. Hanzo, "Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA," in IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1204-1222, March 2014, doi: 10.1109/TVT.2013.2283069.
[16] O. Dizdar, Y. Mao, W. Han and B. Clerckx, "Rate-Splitting Multiple Access: A New Frontier for the PHY Layer of 6G," 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1-7, doi: 10.1109/VTC2020-Fall49728.2020.9348672.
[17] Z. Ding, M. Peng and H. V. Poor, "Cooperative Non-Orthogonal Multiple Access in 5G Systems," in IEEE Communications Letters, vol. 19, no. 8, pp. 1462-1465, Aug. 2015, doi: 10.1109/LCOMM.2015.2441064.
[18] J. -H. Yan, J. -W. Hsu, J. -K. Huang, Y. -Y. Lin and K. -M. Feng, "NOMA-CoMP for 5G MMW Fiber Wireless Integration Fronthaul System with SFBC," 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, pp. 1-3.
[19] A. Benjebbour and Y. Kishiyama, "Combination of NOMA and MIMO: Concept and Experimental Trials," 2018 25th International Conference on Telecommunications (ICT), 2018, pp. 433-438, doi: 10.1109/ICT.2018.8464916.
[20] K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Trans. Commun., vol. E98-B, no. 3, pp. 403–414, Mar. 2015.
[21] B. Anass, "An overview of non-orthogonal multiple access", ZTE Commun., vol. 15, no. s1, pp. 1-30, Jun. 2017.”
[22] J. Zyren and W. McCoy. Overview of the 3GPP Long Term Evolution Physical Layer, Online available, July 2007.
[23] E. Basar, "Index modulation techniques for 5G wireless networks," in IEEE Communications Magazine, vol. 54, no. 7, pp. 168-175, July 2016, doi: 10.1109/MCOM.2016.7509396.
[24] B. Hassibi and B. Hochwald, "High-rate linear space-time codes," 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, pp. 2461-2464 vol.4
[25] M. Simon and M. S. Alaouni, Digital Communications Over Fading Channels. New York, NY, USA: Wiley, 2005.
[26] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao and H. Haas, "Index Modulation Techniques for Next-Generation Wireless Networks," in IEEE Access, vol. 5, pp. 16693-16746, 2017, doi: 10.1109/ACCESS.2017.2737528.
[27] K. F. Lee and D. B. Williams, "A space-frequency transmitter diversity technique for OFDM systems," Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137), 2000, pp. 1473-1477 vol.3, doi: 10.1109/GLOCOM.2000.891885.
[28] S. Coleri, M. Ergen, A. Puri and A. Bahai, "Channel estimation techniques based on pilot arrangement in OFDM systems," in IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223-229, Sept. 2002, doi: 10.1109/TBC.2002.804034.
[29] C. Lim, Y. Tian, C. Ranaweera, T. A. Nirmalathas, E. Wong and K. -L. Lee, "Evolution of Radio-Over-Fiber Technology," in Journal of Lightwave Technology, vol. 37, no. 6, pp. 1647-1656, 15 March15, 2019, doi: 10.1109/JLT.2018.2876722.
[30] J. -H. Yan, J. -W. Hsu, J. -K. Huang, Y. -Y. Lin and K. -M. Feng, "NOMA-CoMP for 5G MMW Fiber Wireless Integration Fronthaul System with SFBC," 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, pp. 1-3.

(此全文20250203後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *