帳號:guest(18.118.27.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佑儒
作者(外文):Lin, You-Ru
論文名稱(中文):基於可暫存的 D2D 多播網路之資源分配方法
論文名稱(外文):Resource Allocation for Cache-Enabled D2D Multicast Networks
指導教授(中文):高榮駿
指導教授(外文):Kao, Jung-Chun
口試委員(中文):趙禧綠
楊舜仁
口試委員(外文):Chao, Hsi-Lu
Yang, Shun-Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064520
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:55
中文關鍵詞:D2D 多播通訊無線資源分配可暫存 D2D
外文關鍵詞:D2D multicastc ommunicationsradio resource allocationache- enabled D2D
相關次數:
  • 推薦推薦:0
  • 點閱點閱:355
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
因為現今日益增長的用戶需求,D2D 多播通訊 (Device-to-Device multicast
communications) 作為加強傳統 D2D 通訊技術以提升頻譜效率的技術可以滿足
更大量的使用者需求而備受期待,我們考慮存在多個 Cache-Enabled D2D 裝置
的環境,每個 D2D 設備都配有有限容量的電池而且可以作為需求者 (demander)
要求下載檔案同時也能作為幫助者 (helper) 傳送存放在暫存中的檔案給需求
者。 為了提高在此 Cache-Enabled D2D 網路的頻譜效益,我們提出了一個方法
並分成三個步驟,第一個步驟的目的是使用最少數量的幫助者來滿足盡可能多
的需求者的需求,一個幫助者允許同時為多個需求者服務,我們將這個問題轉
化成最小集合覆蓋問題的變種並使用啟發式演算法來找出最小數量的幫助者集
合。 在取得幫助者集合後,由於每個幫助者都會服務多個需求者,所以第二個
步驟是要去決定每幫助者的功率分配,以便在最短時間內完成檔案傳輸,同時
也要滿足所有需求者的速率要求以及幫助者的功率限制。 第三個步驟目的是通
過讓多個幫助者共享一個頻譜資源來盡量減少使用的頻譜資源數量,實驗結果
表明,我們提出的方法可以顯著增加被良好服務的需求者數量 (由幫助者提供服
務),並提高頻譜效益和幫助者的效益。
We consider a mobile network in which there exist multiple device-to-device
(D2D) multicast networks. Each D2D node is powered by finite-capacity battery
and can serve as a demander (which requests of downloading files) and/or a helper
(which sends files stored in its cache to demanders). This cache-enabled scenario
offloads data delivery (which is originally targeted for base stations) to helpers.
In order to improve spectral efficiency in this cache-enabled scenarios, we de-
velop a method, which could be divided into helper association, sum multicast
rate maximization, and channel-sharing scheduling.
The helper association process aims to satisfy the rate requirements of as many
demanders as possible by utilizing fewest helpers; a helper is allowed to serve
multiple demanders. We transfer this helper association problem into a variant
of the minimum set cover problem and use a heuristic algorithm to find out a
minimal set of helpers.
After obtaining a set of helpers, each of which serves multiple demanders, the
sum multicast rate maximization process decides power allocation for each helper
in order to finish file transmissions in the shortest time duration while satisfying
rate requirements of all these demanders and power constraints of the helpers
themselves.
The channel sharing scheduling process aims to minimize the number of chan-
nels in use by letting multiple helpers share the same channel if it can fit. The
experimental results show that our proposed method can significantly increase
the number of well-served demanders (that are served by helpers) and improve
per-channel efficiency and per-helper efficiency.
Keywords: D2D multicast communications, radio resource allocation, cache-
enabled D2D
Abstract i
中文摘要 iii
Contents iv
List of Figures vi
1 Introduction 1
2 Related Work 5
3 System Model 8
3.1 Cluster model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Multi-file model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Problem Formulation 13
5 Our Method 17
5.1 Helper association process . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1 Awareness of residual battery capacity . . . . . . . . . . . . 18
5.1.2 Transformation to the set cover problem . . . . . . . . . . . 21
iv
5.1.3 Finding the solutions by Modified Algorithm X . . . . . . . 22
5.1.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Sum multicast rate maximization process . . . . . . . . . . . . . . . 27
5.3 Channel sharing scheduling process . . . . . . . . . . . . . . . . . . 30
5.3.1 Enhancing phase . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Simulation 33
6.1 Compared algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.1 The decentralized matching algorithm . . . . . . . . . . . . 34
6.1.2 The matching and coalitional game algorithm . . . . . . . . 34
6.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.1 Total traffic volume received by demanders . . . . . . . . . . 39
6.3.2 Traffic volume per active channel . . . . . . . . . . . . . . . 40
6.3.3 Traffic volume per active helpers . . . . . . . . . . . . . . . 42
6.3.4 Energy consumption per file reception . . . . . . . . . . . . 43
6.3.5 The total number of active helpers . . . . . . . . . . . . . . 44
6.3.6 Computational time . . . . . . . . . . . . . . . . . . . . . . 45
7 Conclusion 47
A Proof of monotonically increasing 48
B Minimum set cover problem 50
Reference 52
[1] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, “Basestation assisted device-to-device communications for high-throughput wireless video networks,” IEEE Transactions on Wireless Communications, vol. 13,
no. 7, pp. 3665–3676, 2014. doi: 10.1109/TWC.2014.2316817.
[2] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching networks: Basic principles and system performance,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 1, pp. 176–189, 2016. doi: 10.1109/
JSAC.2015.2452672.
[3] J. Liu, B. Bai, J. Zhang, K. B. Letaief, and Y. Li, “Joint device caching
and channel allocation for D2D-assisted wireless content delivery,” in 2018
IEEE International Conference on Communications (ICC), 2018, pp. 1–6.
doi: 10.1109/ICC.2018.8422591.
[4] P. Duan, Y. Jia, L. Liang, J. Rodriguez, K. M. S. Huq, and G. Li, “Spacereserved cooperative caching in 5G heterogeneous networks for industrial
IoT,” IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2715–
2724, 2018. doi: 10.1109/TII.2018.2794615.
[5] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “A novel cache-aided Fog-RAN
architecture,” in 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 2977–2981. doi: 10.1109/ISIT.2019.8849605.
[6] S. A. Taheri and M. Rasti, “Caching placement and offloading in D2Dassisted wireless networks with in-band full duplex,” in 2020 28th Iranian
Conference on Electrical Engineering (ICEE), 2020, pp. 1–5. doi: 10.1109/
ICEE50131.2020.9260935.
[7] Z. Chen, Z. Chen, Y. Jia, and L. Liang, “Residual energy-aware caching
in mobile D2D cellular network,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1–6. doi: 10.1109/ICC.
2019.8762068.
[8] X. Zhang and J. Wang, “Heterogeneous statistical QoS-driven resource allocation for D2D cluster-caching based 5G multimedia mobile wireless networks,” in 2018 IEEE International Conference on Communications (ICC),
2018, pp. 1–6. doi: 10.1109/ICC.2018.8422701.
[9] J. Chuan, L. Wang, and J. Wu, “Belief propagation based distributed content
delivery scheme in caching-enabled D2D networks,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC), 2019, pp. 1–5.
doi: 10.1109/ICC.2019.8761590.
[10] B. Chen, C. Yang, and G. Wang, “High-throughput opportunistic cooperative device-to-device communications with caching,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 8, pp. 7527–7539, 2017. doi: 10.1109/
TVT.2017.2659701.
[11] Y. Wang, G. Feng, J. Lin, et al., “Optimal content caching policy considering
mode selection and user preference under overlay D2D communications,” in
2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks
(MSN), 2018, pp. 212–217. doi: 10.1109/MSN.2018.00035.
[12] Y. Wu, D. Wu, L. Yang, and S. Xu, “Incentive-based cluster formation for
D2D multicast content sharing,” in 2018 24th Asia-Pacific Conference on
Communications (APCC), 2018, pp. 125–130. doi: 10.1109/APCC.2018.
8633512.
[13] S. Kim, “A new multicasting device-to-device communication control scheme
for virtualized cellular networks,” Wireless Communications and Mobile Computing, vol. 2019, pp. 1–9, Feb. 2019. doi: 10.1155/2019/3540674.
[14] X. Zhang and J. Wang, “Heterogeneous statistical QoS-driven power allocation for collaborative D2D caching over edge-computing networks,” in
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 944–953. doi: 10.1109/ICDCS.2019.00098.
[15] S. Yu, R. Langar, and X. Wang, “A D2D-multicast based computation offloading framework for interactive applications,” in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6. doi: 10 . 1109 /
GLOCOM.2016.7841490.
[16] L. Feng, P. Zhao, F. Zhou, et al., “Resource allocation for 5G D2D multicast
content sharing in social-aware cellular networks,” IEEE Communications
Magazine, vol. 56, no. 3, pp. 112–118, 2018. doi: 10 . 1109 / MCOM . 2018 .
1700667.
[17] G. Zhang, K. Yang, and H.-H. Chen, “Socially aware cluster formation and
radio resource allocation in D2D networks,” IEEE Wireless Communications, vol. 23, no. 4, pp. 68–73, 2016. doi: 10.1109/MWC.2016.7553028.
[18] D. E. Knuth, “Dancing links,” 2000. doi: 10.48550/ARXIV.CS/0011047.
[Online]. Available: https://arxiv.org/abs/cs/0011047.
[19] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.931, Dec. 2009, Version
9.0.0.
[20] G. Piro, A. Orsino, C. Campolo, G. Araniti, G. Boggia, and A. Molinaro,
“D2d in lte vehicular networking: System model and upper bound performance,” in International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops, Brno, Czech Republic, Oct. 2015, pp. 281–
286.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *