帳號:guest(3.139.82.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳竣宇
作者(外文):Chen, Chun-Yu
論文名稱(中文):基於載波頻率偏移同步技術之毫米波多輸入多輸出混和預編碼濾波正交多頻分工處理器設計
論文名稱(外文):Hybrid-Precoding-Based MIMO Filtered-OFDM Processor with Carrier Frequency Offset Synchronization for Millimeter Wave Systems
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):蔡佩芸
沈中安
口試委員(外文):Tsai, Pei-Yun
Shen, Chung-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064513
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:76
中文關鍵詞:濾波正交分頻多工多輸入多輸出超大型積體電路設計基頻通訊處理器混合預編碼毫米波通道第五代行動通訊技術
外文關鍵詞:Filtered-OFDMMIMOVLSI designBaseband processorHybrid-precodingmmWave channel5G wireless communication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
濾波正交分頻多工(F-OFDM)是基於5G毫米波(mmWave)環境所提出的無線通訊系統,由於它會將整個頻寬分成多個稱為「子頻帶」的頻率區域,因此F-OFDM可應用於物聯網(IoT)以同時執行多個功能。每個子頻帶需要通過濾波來抑制頻帶外泄(out-of-band emission),並防止鄰近通道干擾(ACI)。然而,通道在現實環境中存在一些非理想效應,如載波頻率偏移(CFO),它可能破壞相鄰子載波之間的正交性,頻率偏移會降低F-OFDM系統的性能準確性,因此符號時序偏移(STO)的偵測和CFO估計變得十分重要。與傳統OFDM相比,我們提出的架構是可規格化的,簡單來說,它可以支援多種不同的規格,且滿足CFO的補償。在本篇論文中,為了降低硬體成本和功率消耗,我們採用了一種混合形式,同時使用數位和類比架構來實現預編碼。並且,我們將多輸入多輸出(MIMO)的F-OFDM基頻處理器與我們合作團隊所設計的「基於波束搜索(beam search)演算法的射頻組合器(RF combiner)」進行了整合。此外,該硬體架構使用TSMC的40奈米製程,並以200 MHz的運行頻率進行合成與實現,對於整體混合預編碼的MIMO F-OFDM系統,最大吞吐量可達到1.13 Gbps。
Filtered Orthogonal Frequency Division Multiplexing (F-OFDM) was proposed for 5G wireless communication systems. Meanwhile, it can be applied to several works since the whole bandwidth is split into small frequency regions, which is called “sub-band”. Each sub-band needs to suppress out-of-emission by filtering and prevent adjacent-channel interference (ACI). However, the channel has some non-ideal effects in the real environment such as carrier frequency offset (CFO). It can destroy the orthogonality between adjacent subcarriers. Frequency offset reduces the accuracy of performance in the FOFDM systems, so it is important to carry out symbol timing offset (STO) detection and CFO estimation. In contrast to traditional OFDM, the architecture which we proposed is reconfigurable. To put it simply, it can support over ten different specifications and also satisfy the recovery of CFO. In this work, to decrease the hardware cost and consumption by power, we adopted a hybrid form to implement precoder and combiner with digital and analog. Then, we integrated the multiple-input multiple-output (MIMO) F-OFDM baseband processor with a baseband combiner and beam search RF combiner designed by our cooperation team. Furthermore, the entire hardware is also synthesized and implemented by TSMC 40nm process with 200 MHz operating frequency. The maximum throughput can reach 1.13 Gbps for overall hybrid-precoding MIMO filtered-OFDM.
摘要
1 Introduction 1
1.1 Modulations of 5G MIMO Systems . . . . . . . . . . . . . . . . . . . . . 1
1.2 Effects of Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hybrid Precoding Architecture . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Hybrid-Precoding Filtered-OFDM System 7
2.1 MIMO Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hybrid-Precoding and Combining for mmWave MIMO Systems . . . . . 10
2.2.1 Modified Block SVD Power Method Baseband Precoding [1] . . . 11
2.2.2 Square Root Baseband Combining [2] . . . . . . . . . . . . . . . . 12
2.2.3 RF Precoding and Combining with Beam Search [3] . . . . . . . . 15
2.3 Filtered Orthogonal Frequency Division Multiplexing [4] . . . . . . . . . 18
2.3.1 Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1.1 Cyclic Prefix (CP) Insertion . . . . . . . . . . . . . . . . 20
2.3.1.2 Up-sampling and Filtering . . . . . . . . . . . . . . . . . 21
2.3.1.3 Up-conversion . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2.1 Down-conversion and Filtering . . . . . . . . . . . . . . 27
2.3.2.2 Time Synchronization . . . . . . . . . . . . . . . . . . . 28
2.3.2.3 Channel Estimation . . . . . . . . . . . . . . . . . . . . 31
3 Integrated Architecture of Hybrid-Precoding MIMO F-OFDM with
Synchronization and Simulation Results 33
3.1 Systems of Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Synchronization of Fractional Carrier Frequency Offset (FCFO) . . . . . 38
3.3 Synchronization of Integer Carrier Frequency Offset (ICFO) . . . . . . . 40
3.4 Recovery of Carrier Frequency Offset . . . . . . . . . . . . . . . . . . . . 41
3.5 Specifications of Different Numerologies and Parameters . . . . . . . . . 43
3.6 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 46
4 Hardware Architecture 57
4.1 VLSI of Filtered-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 STO Detection and CFO Estimation . . . . . . . . . . . . . . . . 61
4.1.3 Numerical Control Oscillator (NCO) . . . . . . . . . . . . . . . . 64
4.1.4 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 VLSI of Baseband Combiner . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Timing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Synthesis Results of Integrated Hardware . . . . . . . . . . . . . . . . . . 68
5 Conclusion 71
References 73
[1] H.-W. Ku, “Hybrid precoding and combining algorithms for wideband millimeter wave mimo systems,” Master’s thesis, National Tsing Hua University, Taiwan, 2018.
[2] H.-L. Tso, “Mimo hybrid precoding based filtered orthogonal frequency division multiplexing baseband processor for millimeter wave systems,” Master’s thesis, National Tsing Hua University, Taiwan, 2022.
[3] P.-H. Pan, “Design and implementation of hierarchical space-time beam search in hybrid-beamforming mimo-ofdm systems,” Master’s thesis, National Central University, Taiwan, 2023.
[4] C. Hsu, “Reconfigurable filtered orthogonal frequency division multiplexing baseband processor for 5g mobile communication systems,” Master’s thesis, National Tsing Hua University, Taiwan, 2019.
[5] G.-K. Chang and L. Cheng, “Fiber-wireless integration for future mobile communications,” in 2017 IEEE Radio and Wireless Symposium (RWS), 2017, pp. 16–18.
[6] Y. Xu, Z. Feng, J. Zou, D. Kong, Y. Xin, and T. Jiang, “An imaginary interferencefree method for mimo precoding in fbmc/oqam systems,” IEEE Transactions on Broadcasting, vol. 67, no. 3, pp. 642–650, 2021.
[7] Q. Y. Hengwei Lv, Pandong Li and H. Zhang, “Energy-efficient multi-cell resource allocation in cognitive radio-enabled 5g systems,” EURASIP, 1 2019.
[8] Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaiek, R. Zayani, D. Demmer, R. Zakaria, J.-B. Dor´e, M. Ben Mabrouk, D. Ruyet, Y. Louet, and D. Roviras, “On the road to 5g: Comparative study of physical layer in mtc context,” IEEE Access, vol. PP, pp. 1–1, 11 2017.
[9] W. M. Hadiansyah, T. Suryani, and G. Hendrantoro, “Doppler spread estimation for ofdm systems using phase difference method in rayleigh fading channels,” in 2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2012, pp. 147–152.
[10] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, 2014.
[11] P. Skrimponis, S. Dutta, M. Mezzavilla, S. Rangan, S. H. Mirfarshbafan, C. Studer, J. Buckwalter, and M. Rodwell, “Power consumption analysis for mobile mmwave and sub-thz receivers,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
[12] A. Maltsev, R. Maslennikov, A. Sevastyanov, A. Lomayev, and A. Khoryaev, “Statistical channel model for 60 ghz wlan systems in conference room environment,” in Proceedings of the Fourth European Conference on Antennas and Propagation, 2010, pp. 1–5.
[13] A. Maltsev, A. Pudeyev, I. Bolotin, G. Morozov, I. Karls, M. Faerber, I. Siaud, A. M. Ulmer-Moll, J. M. Conrat, R. Weiler, M. Peter, and W. Keusgen, MiWEBA (Millimeter-wave Evolution for Backhaul and Access) Channel Modeling and Characterization, 2014.
[14] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmwave ofdm large-scale antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1432–1443, 2017.
[15] B. Hassib, “An efficient square-root algorithm for blast,” vol. 2, no. 4, pp. II737 – II740, 2000.
[16] Z. Xiao, H. Dong, L. Bai, P. Xia, and X.-G. Xia, “Enhanced channel estimation and codebook design for millimeter-wave communication,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9393–9405, 2018.
[17] P. Zhou, K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, and Y. Liu, “Ieee 802.11ay-based mmwave wlans: Design challenges and solutions,” IEEE Communications Surveys and Tutorials, vol. 20, no. 3, pp. 1654–1681, 2018.
[18] A. V. Oppenheim and R. W. Schafer, “Discrete-time signal processing, 3rd ed,” in Discrete-Time Signal Processing, 3rd ed, 2010.
[19] Huawei and HiSilicon, Eds., F-OFDM scheme and filter design, vol. R1-165425. 3GPP, 2016.
[20] K. C. Hu and A. G. Armada, “Sinr analysis of ofdm and f-ofdm for machine type communications,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016, pp. 1–6.
[21] C. D and R. L, “Fast inversion of vanderomnde-like matrices involving orthogonal polynomials,” BIT Numerical Mathematics, vol. 33, no. 3, pp. 473–484, 1993.
[22] 5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone, vol. TS 38.521-1 version15.2.0 Release 15. 3GPP, Jul 2018.
[23] P. K. Nishad and P. Singh, “Carrier frequency offset estimation in ofdm systems,” in 2013 IEEE Conference on Information and Communication Technologies, 2013, pp. 885–889.
[24] Y.-J. Su, “Hybrid-precoding-based mimo filtered-ofdm baseband processor for wideband millimeter wave systems,” Master’s thesis, National Tsing Hua University, Taiwan, 2020.
[25] J. Hua, Z. Xu, L. Meng, G. Li, and B. Liu, “An estimation scheme for integer frequency offsets based on pilot channel estimation in wireless ofdm systems,” in 2008 International Conference on Communications, Circuits and Systems, 2008, pp. 254–258.
[26] S. Saigusa, T. Mitomo, H. Okuni, M. Hosoya, A. Sai, S. Kawai, T.Wang, M. Furuta, K. Shiraishi, K. Ban, S. Horikawa, T. Tandai, R. Matsuo, T. Tomizawa, H. Hoshino, J. Matsuno, Y. Tsutsumi, R. Tachibana, O.Watanabe, and T. Itakura, “20.4 a fully integrated single-chip 60ghz cmos transceiver with scalable power consumption for proximity wireless communication,” in 2014 IEEE International Solid State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 348–349.
[27] C.-Y. Liu, M.-S. Sie, E. W. J. Leong, Y.-C. Yao, C.-W. Jen, W.-C. Liu, C.-F. Wu, and S.-J. Jou, “Dual-mode all-digital baseband receiver with a feed-forward and shared-memory architecture for dual-standard over 60 ghz nlos channel,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 608–618, 2017.
[28] K.-L. Chiu, H.-W. Chan, H.-P. Chiu, C.-Y. Liu, C.-W. Jen, and S. J. Jou, “Design of a mmwave digital baseband receiver integrated with wola-cp-ofdm technique,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022, pp. 742–746.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *